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Preface

In this book, we present a proposal for a profile of Prolog calledWeb Prolog. We like
to think of it as a web programming language, or more specifically, as a web logic
programming language, but also as a kind of simple web-based agent programming
language. In addition, the architecture for an extension of the traditional Web that
we think of as the Prolog Web is described, along with descriptions of some of the
Prolog agents that might dwell there. Together, Web Prolog, Prolog agents and the
Prolog Web form what we shall refer to as the Prolog Trinity ecosystem, a hopefully
soon to become niche in the truly gigantic ecosystem of the World Wide Web.

As can be gleaned from its title, as well as from the previous paragraph, the Prolog
programming language plays the lead role in the book, and Prolog programmers and
Prolog system implementors are indeed among its intended readers. However, we do
not think a reader has to be a very experienced Prolog programmer or implementor
to get something out of it. In fact, we are presenting what we believe is a somewhat
novel view of Prolog and Prolog programming, so it might even be good if your
mind is a beginner’s mind, still open to a somewhat different story.

Another programming language, namely Erlang, has an important role to play in
the book, so Erlang developers and other Erlang aficionados might be interested. Or
at least we hope so, as we might have some work cut out for them, both as regards the
future specification of the Web Prolog language, as well as for its implementation.
Note, however, that although the book is written with an audience of Erlangers in
mind, some basic knowledge of Prolog is still assumed.1

Logic programming researchers and system developers aiming for logical purity
might be interested too, but should be aware that the book is focusing on a non-
declarative concurrency and distribution model for Prolog, and does not purport to
contribute to its logic programming aspects. It is still only “good ol’ Prolog.” Logic
programming researchers might find use for it, however, as a way to present their
work to the world, and in particular to other Web Prolog programmers. Oh, and we

1 For readers lacking the necessary background in Prolog, we have a few recommendations to make
in Appendix B.1.6.
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vi Preface

almost forgot, we also intend to show how to wrap the whole globe in pure logic,
and logic programming researchers may want to find out what that means.

The book is also written with an audience of Semantic Web researchers and
practitioners in mind, in the hope that it will seem relevant to some of them. After
all, the Prolog community and the Semantic Web community have something in
common, namely computational logic, and probably also a deep conviction that, on
some level at least, building software agents that are really clever requires logic,
reasoning and a relational way of thinking. We hope to be able to show that Web
Prolog might serve as a semantic web logic programming language – a language that
fits in very well among the other web logic languages defined and standardized by
the W3C, and a suitable language for building semantically aware web applications,
such as intelligent web agents.

Readers interested in Artificial Intelligence (AI) might also be able to get some-
thing out of the book, at least if they are somewhat familiar with Prolog. In particular,
readers who believe, as we do, that it is likely that a lot of what happens within the
field of AI in the coming decades will take place on theWeb, and that intelligent con-
versational agents are likely to serve as the face of AI. Note, however, that the book
has almost nothing to say about neural networks and other non-symbolic approaches
to AI, but is primarily concerned with symbolic approaches, focusing on the use of
logic and reasoning for building web agents. However, having said that, it is of course
impossible to ignore the recent success of so called Large LanguageModels (LLMs),
so we will speculate a little over the relation between LLM technology and our own
approach to symbolic AI on the Web. We can only scratch the surface, but we can
say already at this point that finding the proper balance between such technologies
appears to be as challenging as it is important for the logic programming community
going forward.
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Chapter 1
Web Prolog

Imagine a dialect of Prolog with actors and mailboxes and send and receive – all the means
necessary for powerful concurrent and distributed programming. Alternatively, think of it
as a dialect of Erlang with logic variables, backtracking search and a built-in database of
facts and rules – the means for logic programming, knowledge representation and reasoning.
Also, think of it as a web programming language, and as a lingua franca for logic-based
programming systems, standardised by the W3C. This is what Web Prolog is all about.

Web Prolog – the elevator pitch

1.1 The essence of Prolog

Based on formal logic, a subject dating all the way back to the antiquity and tried
and tested by generations of logicians and philosophers, logic programming forms
a paradigm of it own, very different from the imperative or functional programming
paradigms. Prolog is generally regarded as the first logic programming language,
and is arguably the most important one. Consider the following program:

husband(Wife, Husband) :- wife(Husband, Wife).

wife(socrates, xantippa).
wife(aristotle, pythias).

We have here a rule that translates into the following formula in first-order predicate
logic:

∀x∀y[wi f e(x, y) → husband(y, x)]

The rule in combination with the two facts of the predicate wife/2 (that need no
translation) allow us to query the predicate husband/2. We may for example ask if
it is true that Aristotle was the husband of Pythias:

1



2 1 Web Prolog

?- husband(pythias, aristotle).
true.
?-

Or we can ask who was the husband of Pythias:

?- husband(pythias, Husband).
Husband = aristotle.
?-

Only one solution was found (so it appears that Pythias was not a bigamist, and nor
was Aristotle):

?- husband(Wife, aristotle).
Wife = pythias.
?-

Enumerate the married couples one by one!

?- husband(Wife, Husband).
Wife = xantippa, Husband = socrates ;
Wife = pythias, Husband = aristotle.
?-

This simple example serves as a reminder that Prolog is not only a logic language,
but also a relational language that can be used to check if a sentence is true, to look
up the value of one argument given the value of another, or to enumerate all pairs of
values. When querying a binary relation, these are the modes that exist.

Prolog allows the use of complex terms in the arguments of clauses, here in the
form of lists in the well-known definition of append/3:

append([], L, L).
append([H|L1], L2, [H|L]) :- append(L1, L2, L).

Complex terms in the arguments of clauses ensures that Prolog is a Turing complete
programming language. This is what makes it different from a language such as
Datalog, which is similar in many ways, but is not Turing complete..

In order to be not only Turing complete but also a practical and efficient program-
ming language, serious Prolog systems need to offer a lot more, and they normally
do. In Section 2.1 of Fifty Years of Prolog and Beyond, the authors provide a concep-
tual and minimalist definition of the important features of Prolog, and are thus able
to draw a line between what can be considered a Prolog implementation and what
can not. Actually, they draw two lines, since they distinguish the essential features
of Prolog from important (yet non-essential) features. Below, we reproduce their list
of features, where 1-6 are considered essential features and 7-12 less essential. As it
turns out, all the essential features except for 2) and 6) are involved when querying
the relation between the married couples, or the relation between the lists, in the
examples given above.
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1. Horn clauses with variables in the terms and arbitrarily nested function symbols
as the basic knowledge representation means for both programs (a.k.a. knowledge
bases) and queries;

2. the ability to manipulate predicates and clauses as terms, so that meta-predicates
can be written as ordinary predicates;

3. SLD-resolution (Kowalski, 1974) based on Robinson’s principle (1965) and
Kowalski’s procedural semantics (Kowalski, 1974) as the basic execution mech-
anism;

4. unification of arbitrary terms which may contain logic variables at any position,
both during SLD-resolution steps and as an explicit mechanism (e.g., via the
built-in =/2);

5. the automatic depth-first exploration of the proof tree for each logic query;
6. some control mechanism aimed at letting programmers manage the aforemen-

tioned exploration;
7. negation as failure (Clark, 1978), and other logic aspects such as disjunction or

implication;
8. the possibility to alter the execution context during resolution, via ad-hoc primi-

tives;
9. an efficient way of indexing clauses in the knowledge base, for both the read-only

and read-write use cases;
10. the possibility to express definite clause grammars (DCG) and parse strings using

them;
11. constraint logic programming (Jaffar and Lassez, 1987) via ad-hoc predicates or

specialized rules (Fruhwirth, 2009);
12. the possibility to define custom infix, prefix, or postfix operators, with arbitrary

priority and associativity.

One cannot avoid noticing that, as far as we know, no other community in support
of a programming language has found itself in the position of having to determine
what should be considered a real language of this kind. As we found in Chapter ??,
the problem with Prolog is that there are so many systems around that can rightly
claim to implement it but still are incompatible with each other in important ways.
This is what prompted the development of a standard. For almost thirty years now,
the core features of Prolog has been standardized by ISO, documented in a report
known as ISO/IEC 13211-1:1995.1

1.2 Web Prolog in a nutshell

Web Prolog is designed as a superset of a subset of the ISO Prolog core standard.
The dialect defined by ISO is well understood, and is reasonably close to most of
the dialects used in Prolog textbooks. The ISO Prolog syntax specification as well

1 https://www.iso.org/obp/ui/#iso:std:iso-iec:13211:-1:ed-1:v1:en
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as a large subset of its built-in predicates form an excellent point of departure for our
attempt to create a design and a standard for Web Prolog.

The syntax of Web Prolog is exactly as in ISO Prolog, except that three infix
operators (!/2, if/2 and @/2) that are not in the standard are defined. They can
easily be added by means of op/3, the ISO Prolog predicate allowing a programmer
to define prefix, postfix or infix operators and specify their precedences. This means
that syntactically well-formed Web Prolog programs can always be read (but not
necessarily run) by a conforming implementation of ISO/IEC 13211-1:1995. It is
easy to imagine circumstances where this might come in handy.

The capabilities of a programming language are to a large extent determined by
the built-in constructs it provides. Rather than to make a long list, Figure 1.1 shows
a “cloud” of built-in control constructs and predicates specified by the ISO standard.

Fig. 1.1 A cloud of ISO Prolog built-in predicates.

Most of the predicates in this cloud can and should be supported by Web Prolog.
(We will get to the exceptions a bit further ahead.) However, while most of them are
necessary, they are not sufficient. Here is what else we think is needed:

• In addition to the built-in predicates offered by the ISO Prolog core, Web Prolog
needs to support a set of standard library predicates that conforming nodes on
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the Prolog Web must normally offer. Predicates such as length/2, member/2
and append/3 should be there – a programmer should not have to load them
explicitly.2 The public-domain set of libraries developed by the Prolog Commons
Working Group provides a good start.3

• Item number 10 in the list of essential and important features points to the
possibility to express Definite Clause Grammars (DCGs) and parse strings using
them. DCGs are not yet part of the Prolog ISO standard but are important enough
to warrant inclusion in the Web Prolog language.

• As we are aiming for a profile of Prolog suitable for programming on the Web,
predicates for working with the Web, e.g. http_open/3, and support for serial-
ization as JSON seems essential to have.

• Last but not least, we extend our subset of ISO Prolog with carefully crafted
concurrency and distribution primitives heavily inspired by Erlang. When we
write “heavily inspired,” we really mean it. We try to stay as close to Erlang as
possible, we use the same kind of actor as Erlang, and we use the same names
for our concurrency-oriented predicates that Erlang uses for the corresponding
functions.

We would expect the community to be able to agree on the first three points, and the
last point in the list is likely to present the only major technical challenge. It is not
much of a challenge however, since Erlang shows us we are lacking, and where we
need to go.

There are features, predicates and libraries that may never make it into Web
Prolog. The reason why may vary – they may be dangerous, or superfluous. Other
features may be deemed not developed enough to be included in a standard.

• We only use a subset of ISO Prolog as it contains primitives that do not seem
to “belong” on the Web and which may also compromise the security of a node,
such as predicates that gives a program access to the operative system.

• Even though they are certainly relevant to the Web, there is definitely no need for
predicates for building web servers, such as the ones available in SWI-Prolog’s
library(http/http_server). After all, a Prolog node is a web server.

• Even though predicates for constraint logic programming is listed as an important
Prolog feature, we do not believe time is ripe to include them in Web Prolog.
With time, as they mature, this may of course change.

• No (or limited use) of modules [TODO: Expand on this]

We have characterizedWeb Prolog as a profile of Prolog suitable for programming on
the Web. As we shall see, Web Prolog can be cut up into subsets that are themselves
profiles, or sub-profiles if you will. Some such profiles of Web Prolog do not support
predicates for database updates such as assert and retract, or predicates for reading
from and writing to a terminal. Other profiles do not support op/3.

2 https://www.complang.tuwien.ac.at/ulrich/iso-prolog/prologue lists member/2, append/3,
length/2, between/3, select/3, succ/2, maplist/2-8, nth0/3, nth1/3, nth0/4, nth1/4, call_nth/2, foldl/4-
6 and countall/2.
3 http://prolog-commons.org
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1.2.1 Web Prolog is inspired by Erlang

I would prefer multi-threading in Prolog to look as much as possible like Erlang.

Richard O’Keefe

Erlang is a general-purpose, concurrent, functional programming language devel-
oped by Joe Armstrong, Robert Virding andMikeWilliams in 1986. Regarded as the
first actor programming language to gain popularity, it started out as a proprietary
language within Ericsson, but was released as open source in 1998.4 Erlang was
designed with the aim of improving the development of telephony applications, but
has in recent years, thanks to its built-in support for massive concurrency, distribu-
tion and fault tolerance, been used as a very capable language for implementing the
server-sides of web applications,5 as well as for programming a wide range of soft
real-time control problems [48].

Inspired by the list of essential features of Prolog given in the previous section,
and if given the task of formulating a similar list defining what it means to be an
Erlang-style programming language, we would likely include at least the following
three essential requirements:

1. The ability to execute a large number of actor processes concurrently;
2. the ability to use message-passing for inter-process communication, avoiding

mutable shared memory and locking issues;
3. the ability to support network-transparent concurrent programming where actors

are allowed to create other actors on remote computers and enter into seamless
communication with them.

These are three essential features that if added to the features of ISO Prolog will
provide us with the most crucial parts of a foundation for Web Prolog, and indeed
for the whole Prolog Trinity ecosystem. Of course, for this to work we must make
sure that the two sets of features are compatible. Our current understanding is that
they are, and we intend to demonstrate this in the book.

Why did we choose Erlang as a source of inspiration, rather than any alternative?
After all, there are other actor programming languages – Akka, Pony and E, to
name a few. The main reason for the choice of Erlang is that it is arguably the most
mature concurrency-oriented language in existence, with a bigger community than
the alternatives, and a community that includes industrial users. Many millions of
lines of source code have been written in Erlang, many books teaching the language
have been authored, and university courses teaching concurrent and distributed
programming often uses Erlang. In our opinion, since we are aiming for a standard
it makes a lot of sense to borrow the required concurrency-oriented features from a
language as mature and battle-tested as Erlang.

4 A good overview of the Erlang language, its design intent and the underlying philosophy, is given
in the Ph.D. thesis of Joe Armstrong [3].
5 By companies such as WhatsApp and Klarna for example.
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Another reason for our choice is that Erlang and Prolog are in many ways re-
markably similar, both when it comes to syntax, and the reliance on dynamic typing,
assign-once variables, pattern matching and recursion. The similarities can be ex-
plained by the fact that historically, Erlang evolved from Prolog and the first version
of Erlang was actually implemented as an interpreter in Prolog [4]. The following
listings of Prolog code (to the left) and Erlang code (to the right) show some of the
similarities as well as some of the differences between the two languages:

% append/3 % append/2

append([], L, L). append([], L) -> L ;
append([H|L1], L2, [H|L]) :- append([H|L1], L2) ->

append(L1, L2, L). [H|append(L1, L2)].

Note the use of capital letters for variables, the familiar notation for lists, and the
reliance on pattern matching and recursion. A major difference is that Erlang is
a functional programming language, whereas Web Prolog is relational. Since a
function is just a special case of a relation this difference must not be exaggerated,
but it does show in the way function calls may be nested, something that cannot be
done in Prolog (or Web Prolog) since arguments are used to represent outputs as
well as inputs. What can be done in Prolog, however, but not in Erlang, is to call
append/3 in more than one mode – not only to append one list to another, but also,
for example, to non-deterministically split a list up into two parts.

Despite such differences, as long as we do deterministic computation only, and no
search is involved, logic programming and functional programming are fairly similar
in the way they work, and methods used to achieve success with one often transpose
to the other. Again, features such as pattern matching, assign-once variables and
recursion, for example, typically play important roles in both kinds of languages.

Erlang was losing features that Prolog had (and still has), but gained powerful
support for concurrent and distributed programming that Prolog did not have (and
still does not have enough of). We are of course thinking of features such as 1, 2
and 3 in the above list of requirements. Key here is the concept of an actor, and the
ways actors can be scripted. Below, the echo server written in Web Prolog is placed
side-by-side with an implementation in Erlang – a predicate in Web Prolog and a
function in Erlang – both making a recursive call that implements a loop.

echo_actor :- echo_actor() ->
receive({ receive

echo(From, Msg) -> {echo, From, Msg} ->
From ! echo(Msg), From ! {echo,Msg},
echo_actor echo_actor()

}). end.

The Web Prolog code on the left demonstrates the use of two constructs foreign to
traditional Prolog, implementing the sending and receiving of messages in the style
of Erlang. The programs have a similar look, and this is intentional. We have strived
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to make Web Prolog look as similar as possible to Erlang within the constraints
imposed by the syntax of ISO Prolog.6

A function call such as Pid = spawn(fun() -> echo_actor() end) can bemade
in order to spawn an echo server in Erlang, while doing it in Web Prolog would use
something like spawn(echo_actor, Pid). These calls look somewhat similar too,
but while Erlang is a higher-order language in which the spawn function takes an
anonymous function as its argument, Prolog (or Web Prolog) is not a higher-order
language in this sense. In Web Prolog, spawn/2 is a meta predicate which expects a
callable goal to be passed in the first argument, a goal that when called will execute
a procedure that determines how the actor will behave.

1.2.2 Web Prolog is a multi-paradigm programming language

Prolog is different, but not that different.

Richard O’Keefe

Acommonway to categorize programming languages is in terms of the programming
paradigm(s) they support. In the very nicely organized and verywell argued taxonomy
of programming paradigms by Peter van Roy in [47], depicted in Figure 1.2,7 it is
indeed possible to pinpoint exactly where Web Prolog fits in. We have enclosed the
relevant square boxes in boxes with rounded corners.

This suggest that we can regard Web Prolog as a language that supports three
programming models: relational logic programming (like in Prolog), imperative
programming (also like in Prolog), and (like in Erlang) message-passing concurrent
programming. (A note on terminology is in order. In this book we prefer the term
actor-based programming. Joe Armstrong used to refer to it as concurrency-oriented
programming, or COP.).

With access to predicates for asserting and retracting clauses in the dynamic
database, traditional Prolog has always, albeit somewhat reluctantly, been able to
support imperative programming (and later additions such as setarg/3 has of
course amplified this). Also, the built-in backtracking search that is so useful in
Prolog has little to do with logic. Thus Prolog has never really been a single-
paradigm programming language, and this is reflected in van Roy’s taxonomy. In
[47] he suggests that this is not a bad thing:

A good language for large programs must support several paradigms. One approach that
works surprisingly well is the dual-paradigm language: a language that supports one
paradigm for programming in the small and another for programming in the large.

With the addition of support for the actor programming model, Web Prolog becomes
a much clearer as well as (in our view) a more interesting case of a multi-paradigm

6 Note that !/2 here is the Erlang-style send operator, rather than the Prolog cut (!/0).
7 The diagram is available at https://www.info.ucl.ac.be/~pvr/paradigmsDIAGRAMeng108.pdf
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Fig. 1.2 A taxonomy of programming paradigms due to Peter van Roy.

programming language. In particular, it can be argued that the support for program-
ming in the large has been greatly improved.

Still, it is probably wise to entertain a suspicion of unexpected interactions
between language features and possible impedance mismatches between the two
paradigms – between Prolog’s relational, non-deterministic programming model
based on logic and Erlang’s functional and message passing model. How well do the
Erlang-style constructs mix with Prolog – with backtracking for example, or with
the features for imperative programming? What do we get if we combine them? A
kludge, or something quite beautiful? This, as so many other things, might be in the
eye of the beholder, but we know what our eyes tell us.

In theory, we should be on the safe side. Sequential Erlang is basically Erlang
with its data types, one-way pattern matching, functions and control structures, but
without spawn, send, receive, and other constructs used for concurrent programming.
The idea behind Web Prolog can thus be described as an attempt to “plug out” the
sequential part from Erlang and “plug in” sequential Prolog instead. There seems
to be no principled reasons why we would not be able to replace the sequential
functional language with a sequential relational language, e.g. a logic programming
language such as Prolog. Indeed, in [2] Armstrong writes:

Erlang is a concurrent programming language with a functional core. By this we mean that
the most important property of the language is that it is concurrent and that secondly, the
sequential part of the language is a functional programming language.
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The sequential subset of the language expresses what happens from the point it time
where a process receives a message to the point in time when it emits a message. From
the point of view of an external observer two systems are indistinguishable if they obey the
principle of observational equivalence.From this point of view, it does not matter what family
of programming language is used to perform sequential computation. (Our emphasis.)

Alternatively – and this has been our choice – the approach can be described as an
attempt to extend Prolog with constructs such as spawn, send and receive. The idea is
to keep everything that core Prolog has to offer, and extend it with a number of those
primitives that make Erlang such a great language for programmingmessage-passing
concurrency. The choice between extending Prolog with Erlang-style constructs and
extending Erlang with Prolog-style constructs is easy to make, and a lot has to do
with syntax. Provided we can accept using a syntax which is relational rather than
functional, precluding the nesting of function calls, it should be clear by now that
the surface syntax of Prolog can easily be adapted to express the needed Erlang-style
primitives. It is arguably a lot harder to express Prolog rules and other constructs
using the syntax of Erlang.

Paradigms alone hardly capture all there is to a practical programming language.
Languages may also be related by having a special purpose in common, or by
constraints imposed upon them by a particular area of application. One such purpose,
which comes with constraints pertaining to security, is the use of a language for
programming the Web.

1.2.3 Web Prolog as a scripting language for the Web

Scripting languages are a lot like obscenity. I can’t define it, but I’ll know it when I see it.

Larry Wall

Over the years, the Web has become a key delivery platform for a variety of so-
phisticated interactive applications in just about any conceivable domain. As a con-
sequence, JavaScript, more or less the only game in town for programming the
front-end of a web application, has become among the most commonly used pro-
gramming languages on Earth. It appears that even back-end developers are more
likely to use it than any other language.8 Indeed, JavaScript must be regarded as the
web programming language of our times.

JavaScript started out as a very small, highly domain-specific scripting language
that was limited to running within a web browser to dynamically modify the web
page being shown, but has over time evolved into a widely portable general-purpose
programming language. Modern JavaScript is a high-level, dynamically typed, in-
terpreted multi-paradigm programming language with several essential features that

8 http://stackoverflow.com/research/developer-survey-2016#most-popular-technologies-per-
occupation
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make it a versatile tool for web development. JavaScript's syntax supports vari-
ous programming paradigms, including imperative, functional, and object-oriented
programming styles. With features such as callbacks, promises, and async/await,
JavaScript supports asynchronous programming, enabling non-blocking operations,
especially useful in web applications. JavaScript's native format for data interchange,
JSON, is lightweight and widely used for data transmission. JavaScript runs on al-
most all modern web browsers and platforms, making it universally applicable for
web development. It easily interfaces with numerous web APIs (Application Pro-
gramming Interfaces) for tasks like accessing the Document Object Model (DOM),
making HTTP requests and handling events. This makes it an excellent tool for
connecting disparate systems in web applications.

With the advent of Node.js,9 JavaScript extended its reach to server-side develop-
ment. This allowed for a unified language experience across both client and server
sides, simplifying the development process by allowing the same language to be used
throughout the entire stack. Not having to learn more than one language in order to
become a so called “full-stack developer,” and not having to switch languages when
changing fromworking on the server-side to working on the client-side are important
advantages. Also, Node.js is frequently used to build and connect microservices. Its
non-blocking I/O model and event-driven architecture make it suitable for building
scalable and efficient network applications.

It is clear that as a relational logic programming language with the essential and
important features listed above, Prolog is very different from JavaScript in terms of
paradigms supported. The addition of Erlang-style concurrency and asynchronous
communication does not really narrow the gap, as those are features that work
differently in Erlang. What matters here is the role that JavaScript plays on the
Web. We want Web Prolog to play a similar role in the Prolog Trinity ecosystem as
JavaScript does in the JavaScript ecosystem, just as clear-cut.

The connection between scripting languages and the Web has been noted before.
For example, in his 1998 article “Scripting: higher level programming for the 21st
Century,”[33] John Ousterhout writes (about the Internet rather than the Web, but
that makes little difference):

The growth of the Internet has also popularized scripting languages. The Internet is nothing
more than a gluing tool. It does not create any new computations or data; it simply makes
a huge number of existing things easily accessible. The ideal language for most Internet
programming tasks is one that makes it possible for all the connected components to work
together; that is, a scripting language.

So what about the suitability of Web Prolog for programming the Web? Can Prolog
challenge JavaScript in this space, at least for some applications, such as web-based
AI? For this to be possible, we must ensure that Web Prolog is

• viable as a scripting language,
• suitable for programming the Web,
• possible to implement in browsers, and

9 https://en.wikipedia.org/wiki/Node.js



12 1 Web Prolog

• secure.

As regards the viability of Web Prolog as a scripting language we note that while
hardly a definition, Ousterhout characterizes scripting languages as follows in [33]:

1. They are suitable for “programming in the large,”
2. they are designed for “glueing” applications together,
3. they tend to be typeless, thus making it easier to connect components,
4. they are usually interpreted, thus providing rapid turnaround during development

by eliminating compile times,
5. they are higher level than a system programming language in the sense that a

single statement does more work on average, and
6. they allow rapid prototyping.

JavaScript does indeed fit this characterization, but given the development we de-
scribed above, it should now probably be described as general-purpose languages
which also happens to be suitable for scripting. By contrast, some languages are not
suitable for that purpose – C++ and Java comes to mind.

What about Prolog? Does it satisfy Ousterhout’s characterization? The points 3-6
in his list are probably true of the Prolog programming language in general. (With
the possible exception of 4 – some systems compile, but do it very quickly.) Whether
or not the points 1 and 2 applies varies between systems. For example, the people
behind the commercial SICStus Prolog appears to regard Prolog more as a language
for writing problem-solving modules to be embedded into other code, written in
Java, C++, Python or what have you.10 It is only a guess, but we suspect that the
people behind SICStus Prolog would not be willing to characterise it as a scripting
language, although that may simply be a business decision more than anything else.
In contrast, acting as a glue language and a language for programming in the large is
the ambition of SWI-Prolog, witness the following quote from the online manual:11

SWI-Prolog positions itself primarily as a Prolog environment for ‘programming in the
large’ and use cases where it plays a central role in an application, i.e., where it acts as ‘glue’
between components.

Interestingly, the people behind Erlang also think of their language as glue:

We use Erlang as the glue to handle all orchestration, and then we use Python, C, Julia, ... It
is actually a language intended to act as a hub towards other languages. The interfaces could
be protocols, could be RESTful APIs, or other programming languages. It’s ideal for that.12

On theWeb – the biggest distributed programming system ever constructed – Erlang-
style network-transparent message-passing concurrency indeed appears to be ideal
for programming in the large, and indeed for the orchestration of both local and
remote processes. But recall van Roy’s assertion that a good language for large
programs must support several paradigms, one paradigm for programming in the

10 Mats Carlsson, main developer of SICStus Prolog, personal communication
11 http://www.swi-prolog.org/pldoc/man?section=swiprolog
12 See https://www.youtube.com/watch?v=K8nxTSPHZhs5, 8:58 into the discussion.
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small and another for programming in the large. With the addition of Erlang-style
message-passing concurrency to Prolog’s logic programming core supplemented by
its imperative features, we end up with three paradigms. This cannot be a bad thing.
It is likely that Erlang glue is of a different kind, with different properties, than
Prolog glue. There is hope that the combination of Prolog and Erlang might result
in an even stronger and more flexible glue of the kind required – a superglue if you
will.

Despite the good fit with Ousterhout’s characterization, neither Prolog nor Erlang
are usually advertised as scripting languages, and they were not designed for the
purpose of glueing applications together (or at least Prolog was not). They are both
full-blown very flexible general-purpose programming languages with “batteries
included.” Like JavaScript, they should probably be regarded as general-purpose
languages which also happens to be suitable for scripting.

Web Prolog is a very general special-purpose scripting language. Similar to
most other scripting languages, Web Prolog can be used for purposes for which
“scripting” is not really the right word. Web Prolog comes with a focus on web
logic programming as well as web agent programming, and in client-side browsers
as well as server-side. Using Web Prolog, the owner of a node is for example able
to build knowledge bases consisting of many millions of clauses – facts as well as
rules, and/or web agents that can make use of such knowledge bases.

Regarding our third point, for Web Prolog to become a viable web programming
complement to JavaScript it is vital that it can be implemented in browsers too, since
this comes with a number of advantages:

1. When network connection is slow, it is best to perform the majority of computa-
tions in the browser.

2. This is where, in most scenarios, the state of an interaction between a user and an
application should preferably be represented.

3. Client-side computation reduces the demands placed on nodes.
4. This is also where we find browser APIs that lets a web developer manipulate the

DOM, store data locally, and add features such as spoken interaction, video or
graphics to an application.

For Web Prolog in the browser to play the same role as JavaScript in the browser
currently does, it must allow Web Prolog source code to be loaded from any server
on the Web by means of the HTML <script> element, inline or with a link.

We do not, however, go all the way in our attempt to replicate Javascript’s abilities
as a scripting language. One thing that we do not at this time aim for is to make
Web Prolog into a language with primitives for scripting the Document Object
Model (DOM) in web browsers. With time it may well be interesting to develop
such capabilities, but we believe it is simply too early to try to standardize them. In
fact, we suspect that JavaScript will reign supreme in that role, and that if a browser
is running Web Prolog locally, it will be as a web worker,13 with which the main
JavaScript process is talking.

13 https://en.wikipedia.org/wiki/Web_worker
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As for security, similar to JavaScript, Web Prolog is a sandboxed language, open
to the execution of untested or untrusted source code, possibly from unverified or
untrusted clients without risking harm to the host machine or operating system.
Therefore, Web Prolog does not include predicates for file I/O, socket programming
or persistent storage, but must rely on the host environment in which it is embedded
for such features.

WebProlog does indeed share someof the properties thatmade JavaScript succeed
on the Web. A visit to a web application server starts a JavaScript process on the
client, running code that has been downloaded from the application’s host to the
user’s client. Such a process must be allowed to run there (i.e. the owner of the client
must allow it), and when it is (and most users allow it by default), it must execute in
a way that does not harm the client. When a Web Prolog process is run on a node it
must be allowed by its owner to do so, and it must run without harming the node.
So one thing they share, Web Prolog and JavaScript, is the ability to run untested
and untrusted source code, authored by unverified and untrusted programmers, in a
sandbox on someone else’s computer.

In summary, while JavaScript's initial role was confined to client-side scripting
in web browsers, its capabilities have expanded significantly. Today, it serves as a
versatile glue language that connects various components in both client and server
environments, aswell as in the broaderweb development ecosystem.When designing
Web Prolog and the rest of the Prolog Trinity ecosystem, we must of course try to
learn from such a popular and versatile tool for web development, with a focus on
the good parts in particular.

1.3 Erlang-style message-passing concurrency in Web Prolog

In a nutshell, if you were an actor in Erlang’s world, you would be a lonely person, sitting
in a dark room with no window, waiting by your mailbox to get a message. Once you get a
message, you react to it in a specific way: you pay the bills when receiving them, you respond
to Birthday cards with a “Thank you" letter and you ignore the letters you can’t understand.

Fred Hébert

Inspired by Erlang’s notion of an actor, the Prolog actor is the fundamental unit of
computation in the Prolog Trinity ecosystem. The diagram in Figure 2.2 shows three
actors, one of which has just been spawned, and one that has been opened up so that
we can have a look inside (where on this level of abstraction they all look the same).
A Prolog actor is a process, capable of communicating with the world around it
through messaging. An actor has a unique address – a process identifier, or pid for
short. If we have the pid of an actor, we can message it. Since pids can themselves be
part of a message, it allows other actor processes to communicate back. Furthermore,
an actor has a mailbox that stores incoming messages. There is a receive operation
that allows the actor to select and process messages from the mailbox, and a send
operation that can be used to send messages to any other actor. Finally, there is a
spawn operation that allows an actor to create other actors – child actors as it were.
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Fig. 1.3 The anatomy of a Prolog actor.

Corresponding to these operations there are built-in Web Prolog predicates such
as !/2, receive/1-2 and spawn/2-3. In this section, the use of these and other
predicates will be demonstrated by examples. We choose to work with very simple
examples, many of which are borrowed from tutorials and text books teaching Erlang
to beginners. The major motivation for having it in this way is to try to satisfy two
kinds of readers who might want to approach the material in two different ways.
Readers who have a year or two of Prolog programming under their belt, but feel
that time is ripe to have a look at concurrent programming, may want to look at
the examples very carefully and perhaps work through them themselves using the
proof-of-concept implementation.

Readers who are very experienced Prolog programmers and teachers might want
to ask themselves if this a good way to teach students of Prolog some concurrent
programming techniques, or if something else might work better. Their role is
as evaluators of potential teaching material rather than learners. We know what
we believe; we think Web Prolog might be suitable for teaching both Prolog and
Erlang-style actor programming in the same system, and potentially in a web-based
playground – a great way to create as little hassle for a teacher as possible.

Then, of course, we expect the latter kind of reader to evaluate our proposal and
to determine if Erlang-style concurrent programming makes sense in the context of
Prolog.

1.3.1 Programmer talking to actor, actor talking to itself

If we need to hold a Prolog-style conversation with an actor, we may want to talk to a
Prolog shell. By using a terminal attached to a shell, we can interact with it the way
we normally interact with Prolog, by querying it, updating its dynamic database, and
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so on. For example, here is how we instruct the shell to split a list up into a prefix
and a postfix using append/3:

?- append(Xs, Ys, [a,b,c]).
Xs = [], Ys = [a, b, c] ;
Xs = [a], Ys = [b, c] ;
Xs = [a, b], Ys = [c] ;
Xs = [a, b, c], Ys = [] ;
false.
?-

This book, as we have warned, is not a Prolog tutorial, so how such queries are able
to come up with results is not something we will explain. Our focus is rather on the
concurrency-oriented, message-passing features of Web Prolog, so we begin instead
by introducing a couple of simple messaging primitives. But first, using self/1, we
need to determine the identity of the shell we will be talking to:

?- self(Self).
Self = 85234512.
?-

What we got back here is a pid, an unforgable and locally (but not necessarily
globally) unique identifier. Our proposal here is to use random integers of a size that
makes it impossible in practice for anyone to guess the pid of an actor.

As stated above, if we know the pid of an actor process we can send it a message.
Just as any other kind of actor, the shell is equipped with a mailbox, and this is
where the message will end up. The syntax and semantics of the send operator is
easy to explain. With a call such as Actor ! Message the term Message is sent to
the mailbox of the process identified as Actor, either by means of a pid or (as we
shall see) using a registred name. For example, using !/2 with the pid of our shell
we can instruct it to send itself a message:

?- 85234512 ! hello.
true.
?-

Now we can use receive/1 to make sure that the message we sent was received by
the shell and is present in its mailbox. A single receive clause with a variable in the
head and true in the body does the job:

?- receive({Message -> true}).
Message = hello.
?-

This is the simplest use of the receive operation we can think of, but receive/1
really is more complex than this, so expect more to come further ahead in this chapter.
One more thing about the above call to receive/1 is worth a mention already at
this point though: had the mailbox been empty receive/1 would have blocked the
execution of the process running as a shell, waiting for a message to show up.
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1.3.2 Two utility tools for programming in the shell

Having to copy and paste pids is not very convenient. Instead we can make use of
a shell utility feature, borrowed from SWI-Prolog, which allows a variable binding
resulting from the successful execution of a shell query to be reused in future shell
queries if a dollar symbol is put in front of it, like so:

?- $Self ! hello.
true.
?-

Here, the shell kept track of the most recent binding of Self to a value (85234512
in this case) and substituted the term $Self with that value before the query was
run.

While being able to inspect the contents of the shell’s mailbox during interactive
programming is obviously important, using receive/1 is not the most convenient
way of doing it. After all, we cannot always be sure that there are any messages in
the mailbox, and if it is empty receive/1 will block and make normal interaction
impossible. The call will just hang indefinitely, and the only way out may be to abort
it using Control-C. Furthermore, we may want to see all messages in the mailbox
which means that we need to run receive/1more than once, but we may not know
howmanymessages there are, and then again run into the blocking problem. A more
convenient tool here is the utility predicate flush/0. This predicate will show (and
remove) all messages from the mailbox and will never block.

Below, we demonstrate both of these utilities by first sending yet another message
to our shell and then use flush/0 to inspect and empty the contents of its mailbox:

?- $Self ! goodbye.
true.
?- flush.
Shell got hello
Shell got goodbye
true.
?-

The $Var substitution mechanism (or “dollar notation”) in combination with
flush/0 comes in very handy during interactive programming in the shell and
we shall rely on them extensively when running examples through all of the book.

1.3.3 Actors talking to other actors

It takes two to tango, and an actor talking to itself is not very interesting. Fortunately,
as already mentioned, an actor is capable of creating other actors and then start
talking to them.
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The built-in predicate spawn/1-3 is used to create new actor processes. In a
call such as spawn(Goal,Pid) it expects a callable goal to be passed in the first
argument, and will bind the variable in the second argument to the pid of the actor
that is created. Here is how this might look like:

?- spawn(echo_actor, Pid).
Pid = 72347585.
?-

The goal calls a predicate which determines the behavior of the actor. The actor
process runs in parallel with the caller, the shell in this case. Here is an example
script that implements a simple echo server:

echo_actor :-
receive({

echo(From, Msg) ->
From ! echo(Msg),
echo_actor

}).

We have seen this piece of code before, and it is time to explain how it works. The
predicate echo_actor/0 defines a loop where a call to receive/1 tries to select a
message of the form echo(From,Msg) from the mailbox and send the echo message
back to the actor referenced by the pid to which the variable From is bound, and then
continue looping by making a recursive call.

To make our server return the echo message to the shell we must send it a message
of the form echo(Pid,Msg) with From bound to the pid of the shell and Msg bound
to the message. Here is how we do that:

?- self(Self), $Pid ! echo(Self, hi).
Self = 85234512.
?- flush.
Shell got echo(hi)
true.
?-

The sending is asynchronous, i.e. !/2 does not block waiting for a response but
continues immediately. Also, sending a message to a pid always succeeds and never
throws an exception, even if the pid points to a non-existing process. In that case
the message is simply discarded. This means that short of having the targeted actor
return a confirmation message we will not always know if the message reached it.
However, the above case did not leave us in the dark, as the actual echo served as a
confirmation message.
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1.3.3.1 Monitoring

When an actor process A1 spawns an actor A2, A2 becomes the child of A1, and A1
the parent of A2. Since A2 may in turn spawn other processes, the actors involved
may form a hierarchy. In our previous example, the shell and the echo server entered
into precisely this relationship and thus formed a (very shallow!) hierarchy.

In a call such as spawn(Goal, Pid, Options) the optional third argument is a
list of options used for the configuration of the actor. Two of these options – monitor
and link – can be used to specify what should happen when the actor terminates,
i.e what the parent might learn about the reason for its death, and how its children
will be treated when it dies.

If the value of the monitor option is set to true the actor under construction is
instructed to inform the parent about what eventually will become its fate. Let us
look at a simple example:

?- spawn(append([a,b],[c,d],Zs), Pid, [
monitor(true)

]).
Pid = 60367387.
?- flush.
Shell got down(60367387,true)
true.
?-

Here, the monitor option is set to true, instructing the actor to send a special-
purpose down message carrying a small piece of information on how the run went
to its parent process just before terminating. The idea is to allow the parent process
to observe the child process and to detect if it has terminated for any reason. In this
case, the down message was delived to its parent as soon as the goal terminated.
Normally, an actor process will terminate and completely disappear when it has run
out of things to do. It may be because the script succeeds, or fails, or throws an error.
In this case, the atom true in the second argument of the downmessage tells us that
it terminated in a way that can be considered normal.14

One more thing about this example deserves a comment. Note that although the
goal append([a,b], [c,d], Zs) succeeds, the variable Zs is not bound. This is a
consequence of the fact that the goal is copied before being run in the new process.
(This is how it works in Erlang too.) Because of that, the only way for the parent
process to get hold of the result of the call is to send it to the parent, like so:

?- self(Self),
spawn((append([a,b],[c,d],Zs), Self ! Zs), Pid, [

monitor(true)
]).

Self = 85234512,
Pid = 77129823.

14 Erlang uses the atom normal to indicate this.
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?- flush.
Shell got [a,b,c,d]
Shell got down(77129823,true)
true.
?-

1.3.3.2 Linking

If the value of the link option is true it means that when the actor terminates, any
children that it might have are forced to terminate too. So in the following example,
if the execution of foo/0 spawns other actors (and the link only makes sense if it
does), then should the foo/0 call terminate, these actors will automatically be killed.

?- spawn(foo, Pid, [link(true)]).
Pid = 45092311.
?-

Note that it does not mean that the foo/0 call must terminate if any child that it
may have spawned terminates. The link is uni-directional, and makes the life of a
child dependent on the life of its parent, but never the other way around. (Erlang
is different here, as its links are bi-directional, and we shall discuss this difference
further ahead.)

In the following example, because link is set to false our echo server will not
necessarily terminate if the shell is terminated.

?- spawn(echo_actor, Pid, [link(false)]).
Pid = 66720916.
?-

In our proposal, the default value for link is true, as this is deemed to be what we
usually want. In fact, and for a reason that will be explained later, in the context of
distributed web programming it might be a good idea to require that the value of
link is set to true.

1.3.3.3 Registering

Calling register(Name,Pid) associates the atom Name with Pid. The name can
be used instead of the pid when calling !/2. For example, we can register our shell
under the name shell:

?- self(Self), register(shell, Self).
Self = 85234512.
true.
?- shell ! hello.
true.
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?- spawn(shell ! goodbye).
true.
?- flush.
Shell got hello
Shell got goodbye
true.
?-

Registering is useful when we want to offer a service that should always be available
under a name that is easy to remember. Should a crash occur, all our system needs
to do is to restart it and associate the same name with the pid of the new process.

1.3.3.4 Exiting

Web Prolog supports two predicates, exit/1 and exit/2, that can be used to
terminate an actor process. If the process calls exit(Reason) it will terminate
immediately, and if monitored by its parent process, the parent will be sent a down
message, containing the term that Reason was bound to when predicate was called.

Here is a simple and silly example where a process is spawned and monitored by
the shell. Since the process is told to exit immediately with the reason my_reason,
the shell receives a downmessage with the atom my_reason in its second argument:

?- spawn(exit(my_reason), Pid, [
monitor(true)

]).
Pid = 91325643.
?- flush.
Shell got down(91325643, my_reason)
true.
?-

It sometimes happens that we need to terminate an actor process by force. Our echo
server, for example, can only be terminated in this way. The predicate exit/2 can
be used to terminate any actor process with a known pid. If we do not know the pid,
but it has a name that we know, we can use that instead. To see how this works, let
us spawn a new monitored echo server and register it:

?- spawn(echo_actor, Pid, [
monitor(true)

]),
register(echo_actor, Pid).

Pid = 21562390.
?-

Now, let us say we change our minds and want to get rid of it again:
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?- whereis(echo_actor, Pid),
exit(Pid, ’We changed our minds!’).

Pid = 21562390.
?- flush.
Shell got down(21562390,’We changed our minds!’)
true.
?-

By calling exit/2 with the pid in the first argument and a term detailing the reason
for exiting in the second, we were able to terminate the process. Note that a call to
exit/2 will only accept a pid in its first argument, so if all we have is a name, the
built-in predicate whereis/2 must be used to locate it.

Note that the reason passed to exit/1-2 can be any term, not just an atom. This
means that it can be used to transfer an arbitrarily large chunk of information back
to the parent. However, in most cases an atom is all that is needed, and it is worth
noticing that using true as a reason can be used to suggest to the parent that the
termination was normal, even though it was caused by a call to exit/1-2.

What might seem a bit odd is that even thought 21562390 is now provably dead,
trying to send it a message using a pid or calling exit/2 still succeeds without an
error, although no down message is being sent:

?- self(Self), $Pid ! echo(Self, bye).
Self = 85234512.
?- exit($Pid, ’We changed our minds!’).
true.
?- flush.
true.
?-

Treating !/2 and exit/2 as no-ops when the pid points to a non-existent process is
consistent with how it works in Erlang. However, trying to send a message using the
name of a non-existent process generates an error:

?- echo_actor ! echo($Self, bye).
Error: The name ’echo_actor’ is not associated with a pid.
?-

This too is consistent with how Erlang works.

1.3.4 A closer look at receive/1-2

I would argue that it is precisely the ’receive’ construct in Erlang that makes Erlang such a
joy to use.15

Richard O’Keefe

15 https://groups.google.com/forum/#!msg/erlang-programming/gjU-HCoq7dk/Mx_Af0iQ5P0J
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As shown already, but only for a trivial case, an actor process uses the receive
primitive to extract messages from its mailbox. Since the syntax and semantics of
receive/1-2 is fairly complex, a closer look and more examples are needed. Below
we give several simple examples illustrating different ways to use the receive/1-2
predicate in Web Prolog, demonstrating how to handle different types of messages,
use timeouts, apply guards, and more. Other examples illustrate how messages are
deferred and handled in subsequent receive/1-2 calls, demonstrating the flexibility
of passing and processing messages in Web Prolog.

1.3.4.1 Basic receive

InWeb Prolog, just like in Erlang, the receive operation specifies an ordered sequence
of receive clauses delimited by semicolons. A receive clause always has a head (a
term) and a body of Prolog goals. Schematically, a receive call looks like this:

receive({
Head1 -> Body1 ;
Head2 -> Body1 ;
...
HeadN -> BodyN

})

Often, the head is just a single term serving as a pattern. Any term will do, ground
or non-ground, and even a bare variable is fine.

As in Erlang, receive/1 scans the mailbox looking for the first message (i.e.
the oldest) that matches a pattern in any of the receive clauses, blocking if no such
message is found. If a matching clause is found, the message is removed from the
mailbox and the body of the clause is called. In Web Prolog, just like in Erlang,
values of any variables bound by the matching of the pattern with a message are
available in the body of the clause.

In its simplest form, the receive/1 call waits for a specific message and executes
the corresponding code in the body of the receive clause if a message that matches
the pattern shows up. For example, the following call waits for a message in the form
of hello(Name) and prints a greeting when it appears:

receive({
hello(Name) ->

format("Hello, ~s!~n", [Name])
})

We can specify multiple patterns in a single receive/1 call. For example, this call
handles messages of either the form hello(Name) or the form goodbye(Name),
but only one of them:

receive({
hello(Name) ->
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format("Hello, ~s!~n", [Name]) ;
goodbye(Name) ->

format("Goodbye, ~s!~n", [Name])
})

We can use the _ pattern to catch any message. In the following case, any message
that does not match hello(Name) will be caught by the _ pattern:

receive({
hello(Name) ->

format("Hello, ~s!~n", [Name]) ;
_ ->

format("Unknown message received.~n")
})

We can nest receive/1-2 calls. Here, after having received the start(Name)
message, the call waits for a continue(Msg) message:

receive({
start(Name) ->

format("Starting with ~s.~n", [Name]),
receive({

continue(Msg) ->
format("Continuing with ~s~n", [Msg])

})
})

1.3.4.2 Messages deferred

If no patternmatches amessage in themailbox, themessage is deferred, whichmeans
that the message does not match any of the patterns in the current receive/1-2 call
and remains in the process’s mailbox, possibly to be handled later in the control flow
of the process. The receive is still running, waiting for more messages to arrive, and
for one that will match. Some simple examples illustrating this behavior are shown
below.

In the following example, the goodbye("Bob") message – which is the oldest
and therefore first in line – does not match the clause in the first receive call and is
deferred. The hello("Alice") message matches that clause, and then the clause
in the second receive call handles the goodbye("Bob") message

?- self(Self),
Self ! goodbye("Bob"),
Self ! hello("Alice"),
receive({

hello(Name1) ->
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format("Hello, ~s!~n", [Name1])
}),
receive({

goodbye(Name2) ->
format("Goodbye, ~s!~n", [Name2])

}).
Hello, Alice!
Goodbye, Bob!
true.
?-

This behavior is particularly useful if we expect two messages but are not sure which
one will arrive first. For example, if we insist on processing a message foo before
bar, we can easily do that with receive, like so:

wait_foo :- wait_bar :-
receive({ receive({

foo -> bar ->
process_foo, process_bar
wait_bar }).

}).

Even if bar arrives in the mailbox before foo, calling wait_foo/0 would result in
foo being selected and processed before bar. This is why the receive operator is
often referred to as selective receive.

1.3.4.3 Guards

The head of a receive clause can, in addition to the pattern, optionally specify a
guard in the form of a Prolog goal. The role of a head of the form Pattern if Goal
is to make pattern matching more expressive. Here is an example that distinguishes
between positive and non-positive numbers using guards:

receive({
number(N) if N > 0 ->

format("Positive number: ~p~n", [N]) ;
number(N) if N =< 0 ->

format("Non-positive number: ~p~n", [N])
})

That was simple, and will work in Erlang too, but here is another example, using a
different kind of goal after the if operator:

?- self(Self),
Self ! hello(xantippa),
receive({
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hello(W) if husband(W, H) ->
format("Hello, ~w, say hello to ~w!~n", [W,H])

}).
Hello, xantippa, say hello to socrates!
true.
?-

Note that the variable H does not occur in the pattern. A guard like that cannot be
used in Erlang. In Web Prolog, its value can be passed to the body of the clause and
do a job there. So while readers familiar with Erlang may wonder why we choose if
instead of when, which is the operator Erlang is using, we just happen to think that
this difference is big enough to warrant a different name for the operator.

1.3.4.4 Timeouts

The optional second argument of receive/1-2 expects a list of options. The
timeout option takes an integer or float that specifies the number of seconds before
the call will succeed anyway, even if no match has been found. The on_timeout
option takes a goal that is called if timeout occurs. Here is an example of its use:

receive({
hello(Name) ->

format("Hello, ~s!~n", [Name])
},[ timeout(5),

on_timeout(format("No match received in 5 seconds.~n"))
])

If no message of the form hello(Name) is received within 5 seconds, the code in
the on_timeout option is executed.

Here is how a predicate sleep/1 that suspends execution Time seconds can be
defined:

sleep(Time) :-
receive({},[

timeout(Time)
]).

As we noted earlier, being able to inspect the contents of the shell’s mailbox during
interactive programming is important, and flush/0 is a nice tool for doing just that.
Its definition also serves as yet another example of the use of the timeout option:

flush :-
receive({

Message ->
format("Shell got ~q~n",[Message]),
flush
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},[
timeout(0)

]).

The value 0 of the timeout option ensures that the loop terminates immediately if
no messages remain in the mailbox. This is how the hanging of the receive/1 call
is avoided.

1.3.4.5 The receive predicate is semi-deterministic

The predicate receive/1-2 is semi-deterministic, i.e. it either fails, or succeeds
exactly once. The only way it will fail is if the goal in the body of one of its receive
clauses fails, or if timeout occurs and the goal passed in the on_timeout option
fails.

To see how it pans out in a simple corner case, consider the following two calls:

receive({foo(X) -> true}) receive({foo(X) -> fail})

The first call will succeed if a message matching the pattern foo(X) appears in
the mailbox of the actor process executing the call, a term such as foo(314) for
example. The second call will fail (and possibly cause backtracking) once foo(314)
appears. Only by the first call will the variable X be bound (to 314). Both calls will
remove the matched message from the mailbox. In both cases, if a message appears
that does not match the pattern, it is deferred.

To implement a looping behavior, Prolog programmers occasionally use a failure-
driven loop that relies on backtracking rather than recursion. Using this technique,
our echo server can be rewritten like so:

echo_actor :-
repeat,
receive({

echo(From, Msg) ->
From ! echo(Msg),
fail

}).

For an Erlang programmer, this use of receive/1 may come as a surprise and is
not a technique that can be used in Erlang. In this particular case, a Web Prolog
programmer would be advised to stick to the recursive version. However, there are
cases when a failure-driven loop is the only way forward and we shall look at an
important such case towards the end of this chapter.
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1.4 Erlang-style programming in Web Prolog

Reading the code was fun – I had to do a double take – was I reading Erlang or Prolog –
they often look pretty much the same. Joe Armstrong (p.c. June 18, 2018)

Not only doWeb Prolog programs look a lot like Erlang, they behave a lot like Erlang
too. A good way to demonstrate this is to translate a fair number of different Erlang
programming examples borrowed from tutorials and text books into Web Prolog
and show that they run just like in Erlang. In this section we shall look at a kind
of priority queue, a count server, an event-driven state machine, a universal stateful
server supporting hot code swapping, actors playing ping-pong, a program solving
goals in parallel, and an approach to building simple supervision hierarchies.

While most of the demonstrated actors have a behavior that is fully determined at
the time of their creation, we also show how generic actors can be programmed (or
reprogrammed) post creation-time.

During the exploration of the examples, we point to the importance of the use
of send and receive for implementing the communication protocols allowing actors
acting as clients to, still within the bounds of one node, talk to actors acting as
servers. We also explain why it is often a good idea to hide the details of such
protocols behind a dedicated predicate API.

We have described Web Prolog as a language for distributed programming, but
this chapter will only deal with local concurrency. Distributed programming will be
dealt with in Chapter 3. For more exhaustive documentation of all built-in predicates
available in Web Prolog, consult Appendix A.

1.4.1 A priority queue example

To demonstrate the use of the if operator and the use of two receive/2 options that
causes a goal to run on timeout, we show a priority queue example borrowed from
Fred Hébert’s textbook on Erlang [16]. The purpose is to build a list of messages
with those with a priority above 10 coming first:

important(Messages) :-
receive({

Priority-Message if Priority > 10 ->
Messages = [Message|MoreMessages],
important(MoreMessages)

},[ timeout(0),
on_timeout(normal(Messages))

]).

normal(Messages) :-
receive({
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_-Message ->
Messages = [Message|MoreMessages],
normal(MoreMessages)

},[ timeout(0),
on_timeout(Messages=[])

]).

The timeout set to 0 means that it will occur immediately, but the system tries all
messages currently in the mailbox first.

Below, we test this program by first sending four messages to the toplevel process,
and then calling important/1:

?- self(S),
S ! 15-high, S ! 7-low, S ! 1-low, S ! 17-high.

S = 34871244.
?- important(Messages).
Messages = [high,high,low,low].
?-

Note that the implementation of the priority-queue example relies on the deferring
behavior of receive/1-2 and would not work without it.

1.4.2 An event-driven state machine

Web Prolog’s receive primitive can be used to implement simple event-driven state
machines in straightforward code. Patterns in receive clauses can be used to match
against event messages, guards to encode conditions, and the bodies of receive clause
to perform actions.

Figure 1.4 depicts a machine comprising two states and four transitions.

Fig. 1.4 A simple event-driven state machine

Using predicate names to encode states, here is how it can be implemented:

s0 :- s1 :-
receive({ receive({
e1(X) if c1(X,Y) -> e3(X) if c3(X,Y) ->

a1(Y), a3(Y),
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s1 ; s1 ;
e2(X) if c2(X,Y) -> _AnyEvent ->

a2(Y), s0
s0 }).

}).

In state s0 themachine is waiting for an event message of the form e1(X) or e2(X) to
appear in the mailbox of the current process. If e1(X) is matched and the condition
c1(X,Y) holds, the action a1(Y)will be called and themachine will transition to s1,
but if e2(X) is matched and c2(X,Y) holds, then a2(Y) is called and the machine
stays in state s0. And so on.

As far as we aware, event-driven state machines have not been used much in
the Prolog world. Perhaps the reason is that primitives for sending and receiving
messages did not appear in Prolog until (a few) platforms implemented the ISO
Prolog Threads draft standard. As can be seen by an Erlang/OTP behavior such as
gen_statem,16 Erlang takes event-driven state machines very seriously, and perhaps
it is time for Prolog to follow suit.We shall assume that it is, and in Chapter ?? present
a proposal for how to introduce Web Prolog as a scripting language for StateChart
XML, aW3C standard which provides an XML-based notation for event-driven state
machines of a particularly sophisticated kind.

1.4.3 A stateful count server

We have already looked at an example of a stateless server, namely the echo_actor
presented earlier in this chapter. Let us now turn to stateful servers and show how
state may be programmed. In the following example, we demonstrate how to script
an actor that can keep a count:

count_actor(Count0) :-
receive({

count(From) ->
Count is Count0 + 1,
From ! count(Count),
count_actor(Count) ;

stop ->
true

}).

The predicate count_actor/1 defines a loop where a call to the built-in predicate
receive/1 tries to select a message of the form count(From) from the mailbox,
increment the counter, send the current count back to the actor referenced by the pid
to which the variable From is bound, and continue looping by making a recursive

16 http://erlang.org/doc/man/gen_statem.html
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call. Note how the state of the counter – the current count, that is – is kept in the
argument of the predicate.

Note that we added a second receive clause that will allow us to terminate the
server without using exit/2. We just have to send it a message of the form stop.

Here is how an actor following this script can be made to perform when spawning
it:

?- spawn(count_actor(0), Pid, [
monitor(true)

]).
Pid = 60367387.
?-

Here, the monitor option is set to true, instructing the actor to send a special-
purpose down message carrying a small piece of information on how the run went
to its parent process just before terminating. Default is to not monitor.

Calling self/1 determines the identity of the toplevel process – the process that
just became the parent of the spawned actor:17

?- self(Self).
Self = 41167597.
?-

In the next step the send operator !/2 is used for sending a message to the spawned
actor, instructing it to increment the count and to return the result in the form of a
message.

?- $Pid ! count($Self).
true.
?-

A call to receive/1 can be made in order to collect the message arriving from the
actor:

?- receive({Count -> true}).
Count = count(1).
?-

Here, !/2 is used to send two messages to the actor that will end up in its mailbox,
in the order they were sent:

?- $Pid ! count($Self), $Pid ! stop.
true.
?-

Finally, the utility predicate flush/0 is used to inspect the contents of the mailbox
belonging to the toplevel process:

17 If you are an actor, this is how you find out who you are!
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?- flush.
Shell got count(2)
Shell got down(60367387, true)
true.
?-

Because the actor was monitored, a down message was found in addition to the
current count. The value true in the second argument means that count_actor/1
succeeded.

1.4.4 A bigger, tastier example

As a tastier example of how a process can be made to hold an updatable state during
a conversation we have adapted a fridge simulation example from Fred Hébert’s
introduction to Erlang [16]:18

fridge(FoodList0) :-
receive({

store(From, Food) ->
self(Self),
From ! Self-ok,
fridge([Food|FoodList0]);

take(From, Food) ->
self(Self),
( select(Food, FoodList0, FoodList)
-> From ! Self-ok(Food),

fridge(FoodList)
; From ! Self-not_found,

fridge(FoodList0)
);

terminate ->
true

}).

The program creates a process allowing three operations: storing food in the fridge,
taking food from the fridge, and terminating the fridge. It is only possible to take
food that has been stored beforehand. Again, with the help of recursion the state
of a process can be held entirely in the argument of the predicate. In this case we
choose to store all the food as a list, and then look in that list when someone needs
something.

Assuming the above program is already available, the following session creates
the server process. We can then call self/1, !/2 and flush/0 from the shell in
order to simulate the actions of a client:

18 http://learnyousomeerlang.com/more-on-multiprocessing#state-your-state



1.4 Erlang-style programming in Web Prolog 33

?- spawn(fridge([]), Pid, [
monitor(true)

]).
Pid = 77346122.
?- self(Me), $Pid ! store(Me, meat), $Pid ! store(Me, cheese).
Me = 97216744.
?- flush.
Shell got 77346122-ok
Shell got 77346122-ok
true.
?- self(Me), $Pid ! take(Me, cheese).
Me = 97216744.
?- flush.
Shell got 77346122-ok(cheese)
true.
?- $Pid ! terminate.
true.
?- flush.
Shell got down(77346122, true)
true.
?-

1.4.5 Hiding the details of protocols

In the previous example,we expected programmers to know the details of the protocol
that must be followedwhen interactingwith our fridge simulation, which forced them
to make raw calls using the send operator in combination with the flush/0 utility
predicate. As suggested by Fred Hébert in his book, that is often a useless burden,
and good way around it is to abstract messages away with the help of predicates (or
in Hébert’s case, functions) dealing with receiving and sending them:

store(Pid, Food, Response) :-
self(Self),
Pid ! store(Self, Food),
receive({

Pid-Response -> true
}).

take(Pid, Food, Response) :-
self(Self),
Pid ! take(Self, Food),
receive({

Pid-Response -> true
}).
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Calling receive/1 immediately after having sent the message guarantees that the
communication between client and server stays synchronous. Using store/3 and
take/3, the interaction with the fridge becomes somewhat easier:

?- spawn(fridge([]), Pid, [
monitor(true)

]).
Pid = 55289322.
?- store($Pid, cheese, Response).
Response = ok.
?- take($Pid, cheese, Response).
Response = ok(cheese).
?-

When dealing with actors with more complex protocols, such abstractions turns out
to be of considerable value.

1.4.6 A universal stateful server with hot code swapping

Inspired by one of Joe Armstrong’s lectures on Erlang,19 this is howwemay program
a generic and stateful server inWeb Prolog which can also handle hot code swapping:

server(Pred, State0) :-
receive({

rpc(From, Ref, Request) ->
call(Pred, Request, State0, Response, State),
From ! Ref-Response,
server(Pred, State);

upgrade(Pred1) ->
server(Pred1, State0)

}).

The first receive clause matches incoming rpcmessages specifying a goal, performs
the required computation, and returns the answer to the client that submitted the
goal. The second clause is for upgrading the server.

As can be seen from the first receive clause, the generic server expects the
definition of a predicate with four arguments to be present and callable from the
server. In the case of our refrigerator simulation the expected predicate may be
defined as follows in order to obtain the required specialisation of the generic server:

fridge(store(Food), FoodList, ok, [Food|FoodList]).
fridge(take(Food), FoodList, ok(Food), FoodListRest) :-

select(Food, FoodList, FoodListRest), !.
fridge(take(_Food), FoodList, not_found, FoodList).

19 http://youtu.be/0jsdXFUvQKE
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Let us abstract from the message and make sure that the communication between
client and server stays synchronous:

rpc_synch(To, Request, Response) :-
self(Self),
make_ref(Ref),
To ! rpc(Self, Ref, Request),
receive({

Ref-Response -> true
}).

Note the generation of a unique reference marker to be used to ensure that answers
pair up with the questions to which they are answers. This code too is generic and
follows a common idiom in Erlang that implements a synchronous operation on top of
the asynchronous send and the blocking receive. The predicate rpc_synch/3 waits
for the response to come back before terminating. It inherits this blocking behavior
from receive/1, and it is this behavior that makes the operation synchronous. (We
will see more of this pattern later.)

Here is how we start a server process and then use rpc_synch/3 to talk to it:

?- spawn(server(fridge, []), Pid).
Pid = 97216744.
?- rpc_synch($Pid, store(meat), Response).
Response = ok.
?- rpc_synch($Pid, take(meat), Response).
Response = ok(meat).
?-

Now, suppose we want to upgrade our server with a faster predicate for grabbing food
from the fridge, perhaps one that uses an algorithmmore efficient than the sequential
search performed by fridge/4. Assuming a predicate faster_fridge/4 is already
loaded and present at the node we can make the upgrade without first taking down
the server. This means that we can retain access to the state (and thus not risk losing
any food in the process):

?- $Pid ! upgrade(faster_fridge).
true.
?-

Of course, the server can be reprogrammed in a much more radical way, and not
only become faster, but also be given a totally different behavior.

1.4.7 Making promises, and keeping them

Remote procedure calls being synchronous means the caller is suspended until the
computation terminates and we have to do an idle wait for the answer, although we
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may have something better to do. An alternative approach may be to use a so called
promise, an asynchronous variant of a remote procedure call. To implement this,
we can split the client code above into two parts, and thus create two predicates,
promise/3 and yield/2:

promise(To, Request, Ref) :-
self(Self),
make_ref(Ref),
To ! rpc(Self, Ref, Request).

yield(Ref, Response) :-
receive({

Ref-Response -> true
}).

We can now separate the sending of a request from the receiving of the response,
thus trading a somewhat messier code for a little bit of concurrency where the caller
can perform the RPC, do something else and try to claim the computed value at a
later time, when it may (or may not) be ready. Like so:

...
promise(To, store(meat), Ref),
... do something else here...
yield(Ref, Response),
...

With promise/3 and yield/2 defined, we can of course define rpc_synch/3 as
follows instead of as above:

rpc_synch(To, Request, Response) :-
promise(To, Request, Ref),
yield(Ref, Response).

Abstractions such as these can be compared to Erlang behaviors. They are not always
easy to build, but once they are built they can be fairly easily instantiated and tailored
to specific tasks.

1.4.8 Prolog actors playing ping-pong

Since the servers in the previous sections are running in parallel to the shell and are
talking to it using asynchronous messaging, we have already demonstrated the use
of concurrency. Below, in a probably more convincing example inspired by a user’s
guide to Erlang,20 two processes are first created and then start sending messages to
each other a specified number of times:

20 See http://erlang.org/doc/getting_started/conc_prog.html
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ping(0, Pong_Pid) :-
Pong_Pid ! finished,
format(’Ping finished’,[]).

ping(N, Pong_Pid) :-
self(Self),
Pong_Pid ! ping(Self),
receive({

pong ->
format(’Ping received pong’,[])

}),
N1 is N - 1,
ping(N1, Pong_Pid).

pong :-
receive({

finished ->
format(’Pong finished’,[]);

ping(Ping_Pid) ->
format(’Pong received ping’,[]),
Ping_Pid ! pong,
pong

}).

ping_pong :-
spawn(pong, Pong_Pid),
spawn(ping(3, Pong_Pid)).

When ping_pong/0 is called the behavior of this program exactly mirrors the
behavior of the original version in Erlang:

?- ping_pong.
true.
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Ping finished
Pong finished
?-

This is a concurrent program, but its execution is not done in parallel, but rather as
is illustrated in Figure 1.5 where the upper line represent the “pinger” and the lower
line the “ponger,” and where each gray bar represent a task consisting of the sending
of a message (in light gray) and the reception of the response (in darker gray).
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Fig. 1.5

In Appendix ?? a slightly modified version of this program is used for benchmarking
send and receive in Web Prolog. It turns out that if we run this on a 2023 Apple iMac
with the M3 chip with N set to 100,000 instead of 3 it runs in less than one second.
This means that each task is performed in less than 5 microseconds. Appendix ??
also shows that Erlang is even faster.

1.4.9 Parallel execution of concurrent programs

In this section we will implement parallel/1, a meta-predicate that tries to run a
list of goals in parallel. A call to parallel(Goals) should

1. block until all work has been done, but no longer,
2. succeed, with variable bindings, if all goals succeed,
3. fail as quickly as possible if any goal fails, and
4. rethrow any errors thrown by a goal, also as quickly as possible.

In other words, running a list of goals in parallel should behave in the same way as
when running them sequentially, but finish faster.

For parallel/1 to work properly, we must require something about the input
too, namely that goals in the list are independent, i.e. they must not communicate
using shared variables, or by any other means.

To make it easier to understand what is going on, we begin by writing a predicate
parallel/2 that only takes two goals and spawns two actor processes that solve
them in parallel.

parallel(Goal1, Goal2) :-
self(Self),
spawn((call(Goal1), Self ! Pid1-Goal1), Pid1),
spawn((call(Goal2), Self ! Pid2-Goal2), Pid2),
receive({Pid1-Goal1 -> true}),
receive({Pid2-Goal2 -> true}).

The actor Pid1 calls Goal1 and, if it succeeds, sends the pair of Pid1 and the (now
instantiated) goal term as a message to the parent Self. The actor Pid2 does the
same thing for Goal2.

If the message sent by Pid1 reaches the parent’s mailbox first, then the first
receive clause is triggered, and execution steps to the second receive statement and
waits for the second actor’s message to arrive. If the message sent by Pid2 arrives
first, then it is deferred. Once the message from Pid1 comes along, the first receive
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statement is satisfied and the program steps to the second receive statement, which is
triggered immediately by the deferred message. The result is that when parallel/2
terminates, the messages will have been received irrespective of the order in which
they were sent. The time spent waiting for the call to succeed is the longer of the
response times from the two actors. As so often, asynchronous communication using
send in combination with the selective receive is key to the kind of programming
going on here.

It is important to remember that the goal in the first argument of spawn/2-3
is always copied before being called. This means that the instantiation of a goal
passed to parallel/2 will not happen until the corresponding call to receive/1
has selected the message sent from that call.

This program satisfies our requirements 1) and 2), but not 3) and 4). The problem
is that if one goal fails or throws an error, the corresponding receive will suspend,
waiting in vain for a message of the form Pid-Goal to show up. We will explain
how to deal with this, but first show how our approach can be generalized into taking
a list of goals instead of just two. For this, maplist/3 comes in handy:

parallel(Goals) :-
maplist(par_solve, Goals, Pids),
maplist(par_yield, Pids, Goals).

par_solve(Goal, Pid) :-
self(Self),
spawn((call(Goal), Self ! Pid-Goal), Pid).

par_yield(Pid, Goal) :-
receive({Pid-Goal -> true}).

This, by itself, does not help us satisfy the requirement 3) and 4), but here is a version
of the program that does:

parallel(Goals) :-
maplist(par_solve, Goals, Pids),
maplist(par_yield(Pids), Pids, Goals).

par_solve(Goal, Pid) :-
self(Self),
spawn((call(Goal), Self ! Pid-Goal), Pid, [

monitor(true)
]).

par_yield(Pids, Pid, Goal) :-
receive({

down(Pid, true) ->
true ;

down(_, false) ->
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tidy_up_all(Pids),
!, fail ;

down(_, error(E)) ->
tidy_up_all(Pids),
throw(E)

}),
receive({Pid-Goal -> true}).

In this version, all three predicates from the previous program have been modified.
In par_solve/2 each worker process running a call is now being monitored, and
par_yield/3 (which is par_yield/2 with the addition of a third argument the
purpose ofwhichwe shall explain in a bit) is set up to inspect thedownmessages of the
form down(Pid, Reason) arriving from the worker processes and act appropriately.
If Reason is true nothing needs to be done, if Reason is falsewe call fail as that
will make parallel/1 fail, and if Reason is of the form error(E), E is rethrown.

Note the use of anonymous variables in the first arguments of the patternsmatching
false and error(E). Using Pid here would work too, but might delay the failure
of the call or the rethrowing of an error.

As soon as failure or error is detected, but before failing the entire call or rethrow-
ing the error, the actor running process/1 has a bit of tidying up to do, which will
be performed by a call to tidy_up_all/1. For this it needs access to the complete
list of pids for the worker actors which has been passed along since it was computed
in the first call to maplist/3 in the body of the clause defining parallel/1.

The predicate tidy_up_all/1 can be implemented as follows:

tidy_up_all(Pids) :-
maplist(tidy_up, Pids).

tidy_up(Pid) :-
demonitor(Pid),
exit(Pid, kill),
mailbox_rm(Pid).

mailbox_rm(Pid) :-
receive({

Msg if arg(1, Msg, Pid) ->
mailbox_rm(Pid)

},[
timeout(0)

]).

Here, one actor process at a time is killed by a call to exit/2 (and recall that even if
it is dead already, no error is raised). To avoid that the death of the process generates
an additional down message, the monitoring of it must first be turned off. Finally,
messages with Pid in its first argument that may have reached the mailbox during
the execution of parallel/1 are removed.
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It is time to test our program andmake sure that we get a speedup and that our four
requirements are satisfied. In the following call to parallel/1, we simulate goals
with long running times by combining simple unifications with calls to sleep/1.

?- _Goals = [(X=a,sleep(1)),(Y=b,sleep(3)),(Z=c,sleep(2))],
time(parallel(_Goals)).

% 189 inferences, 0.000 CPU in 3.006 seconds
X = a,
Y = b,
Z = c.
?-

Here the call was done in just 3 seconds rather than the 6 seconds it would take if
running them sequentially. This, of course, is as good as it gets. In terms of timelines,
instead of seeing

Fig. 1.6 One actor performing three tasks sequentially.

we see this:

Fig. 1.7 Three actors performing three tasks in parallel.

If one of the goals fail the entire call fails immediately, just as required by 3):

?- _Goals = [(X=a,sleep(1)),(Y=b,fail),(Z=c,sleep(2))],
time(parallel(_Goals)).

% 105 inferences, 0.000 CPU in 0.001 seconds
false
?-

And finally, as required by 4), if one of the goals is bad an error is thrown that we
can catch:

?- _Goals = [(X=a,sleep(1)),(Y=b,sleep(a)),(Z=c,sleep(2))],
time(catch(parallel(_Goals),E,true)).

% 126 inferences, 0.000 CPU in 0.001 seconds
E = error(type_error(float, a), context(system:sleep/1, _)).
?-
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Fig. 1.8 Three actors performing three tasks concurrently, but not in parallel.

Consider the timeline in Figure 1.8.What if we have seen something like that instead?
The processing would still be concurrent, but your computer might have just one
core. A speedup can only be had if the computer on which the call is made is a
multi-core machine.

Another thing to keep in mind is that if the goals in the list execute very quickly,
the overhead of running parallel/1 is likely to reduce any gains that might be had
by running them in parallel. To make any noticable difference, the predicate must be
fed goals that run for a considerable time.

A predicate such as parallel/1 should probably be available as a built-in in
Web Prolog, and it is encouraging to see that it can be implemented as succinctly as
this.

1.4.10 Creating supervision hierarchies

A supervision hierarchy refers to a structural pattern commonly used in concurrent
and distributed systems, particularly in actor-basedmodels like those found in Erlang.
In such a system, actors are organized in a tree-like hierarchy where parent actors
supervise their children. This structure is deemed crucial for fault tolerance and
system resilience. Supervisors monitor their child actors for errors and decide on
strategies (restart, stop, etc.) when errors occur. This ensures that the system can
recover from errors locally without affecting the entire system’s stability.

Here is code for a simple restarter procedure that takes a goal, a name to be given
to the actor executing this goal, and an integer specifying the number of times a
restart should be attempted before giving up:

restarter(Goal, Name, Count) :-
spawn(restarter_loop(Goal, Name, Count), _, [
monitor(true)

]).

restarter_loop(Goal, Name, Count0) :-
spawn(Goal, Pid, [
monitor(true)

]),
register(Name, Pid),
receive({
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down(Pid, true) ->
true ;

down(Pid, _Anything) ->
( Count0 == 0
-> true
; Count is Count0 - 1,

restarter_loop(Goal, Name, Count)
)

}).

Here is how it will work ([TODO: expand this!]):

?- restarter(echo_actor, echo_actor, 3).
true.
?- self(Self), echo_actor ! echo(Self, hello).
Self = 77129834.
?- flush.
Shell got echo(hello)
true.
?- whereis(echo_actor, Pid), exit(Pid, restart).
Pid = 94203114.
?- self(Self), echo_actor ! echo(Self, hello).
Self = 77129834.
?- flush.
Shell got echo(hello)
true.

1.5 Erlang-style programming beyond what Erlang can do

1.5.1 Getting answers through backtracking

In Chapter 1 we stated that, at least in theory, unexpected interactions between
language features and possible impedance mismatches between Prolog’s relational,
non-deterministic programming model and Erlang’s functional and message passing
model should not cause any problems. As we now turn to more examples that
go beyond what Erlang can easily do, we need to see how well the Erlang-style
constructs do mix with backtracking for example? In this section we show some
examples suggesting that the mix is both sound and easy to understand.

Suppose the query given in the argument to spawn/2 has several answers, a query
such as ?-mortal(Who) for example. Below, a goal containing this query is called,
the first solution is sent back to the calling process, and receive/1 is then used in
order to listen for a message of the form next or stop before terminating:



44 1 Web Prolog

?- self(Self),
spawn(( mortal(Who),

Self ! Who,
receive({

next -> fail ;
stop -> true

})
), Pid).

Pid = 76123351,
Self = 90054377.
?- flush.
Shell got socrates
true.
?- $Pid ! next.
true.
?- flush.
Shell got plato
true.
?- $Pid ! stop.
true.
?-

As this session illustrates, the spawned goal generated the solution socrates, sent
it to the mailbox of the parent shell process, and then suspended and waited for more
messages. When the message next arrived, the forced failure triggered backtracking
which generated and sent plato to the mailbox of the toplevel shell process. The
next message was stop, so the spawned process terminated. Note that the example
demonstrated an actor adhering to what might be seen as a tiny communication
protocol accepting only the messages next and stop.

Looking at the code in the first argument of the calls to spawn/2 above, this is
how we in Prolog often loop over the solutions to a query, using a failure-driven loop
rather than a recursive one. Again, the most obvious way to make the code work as
expected, is to allow receive to fail.

One needs to observe, however, that the goal to be solved in the above example is
hard-coded into the program, that the protocol for the communication between client
and actor is overly simplistic, and that neither failure of the spawned goal, nor error
thrown by it, are handled. There is clearly a need for something more complete and
more generic.

1.5.2 A simple Prolog toplevel actor

In essence, a Prolog toplevel is a failure-driven loop running inside a tail-recursive
loop. The failure-driven inner loop allows a client to ask for one solution at a time to
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a goal, while the outer recursive loop allow it to call several goals in a row and run
each of them to completion.

Below, we show how we can build a simple Prolog toplevel by using a meta-
predicate (such as call_cleanup/2) and by specifying a small set of custom
messages carrying answers and/or the state of the process that needs to be returned
to the calling process. The predicate call_cleanup/2 is here used not only to call
a goal, but also to check if any choice points remain after the goal has been called or
backtracked into.21

simple_toplevel(Pid) :-
simple_toplevel(Pid, []).

simple_toplevel(Pid, Options) :-
self(Self),
spawn(session(Pid, Self), Pid, Options).

session(Pid, Parent) :-
receive({

’$call’(Template, Goal) ->
( call_cleanup(Goal, Det=true),

( var(Det)
-> Parent ! success(Pid, Template, true),

receive({
’$next’ -> fail ;
’$stop -> true

})
; Parent ! success(Pid, Template, false)
)

; Parent ! failure(Pid)
)

}),
session(Pid, Parent).

A suitabla predicate API hiding the details of the protocol from the programmer can
be written like so:

simple_toplevel_call(Pid, Template, Goal) :-
Pid ! ’$call’(Template, Goal).

simple_toplevel_next(Pid) :-
Pid ! ’$next’.

simple_toplevel_stop(Pid) :-
Pid ! ’$stop’.

21 http://www.swi-prolog.org/pldoc/man?predicate=call_cleanup/2
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Note that the code for simple_toplevel/1-2 does not say anything about what
should happen if an error is thrown, which would for example be the case if the
predicate called by the goal is not defined. If the spawned process is monitored,
however, the error messagewill eventually reach themailbox of the spawning process
anyway, in the form of a down message. This means that the actor has terminated.

As we have seen, it is possible for a programmer to access and process different
results of a non-deterministic computation fromwithin a program. This is sometimes
referred to as encapsulated search. But for encapsulated search to become a key
feature of the actor profile of Web Prolog, we need to provide something still more
generic.

As it turns out, however, and as we shall demonstrate in Chapter 2, Web Prolog
programmers do not need to define their own toplevel predicates, but can instead
use a set of built-in predicates in order to create and control more powerful Prolog
toplevels, which are actors adhering to a standardized and much improved protocol.



Chapter 2
Prolog agents

Imagine a world of Prolog agents, some useful, others playful, bringing joy to games and
virtual worlds; some short-lived, others long-lived, some simple, others complex – butmaybe
built from simpler ones. Written in Web Prolog, talkingWeb Prolog with other agents, using
Web Prolog knowledge bases to guide their actions and conversations, making sure impor-
tant capabilities of clever conversational agents, such as natural language understanding,
knowledge representation, reasoning and real-time interaction, are accounted for.

Prolog agents – the elevator pitch

Chapter ?? introduced the notion of a Prolog agent. In Chapter 1 we introduced the
more precise concept of a Prolog actor – the most elementary form of Prolog agent in
the Prolog Trinity ecosystem. In this chapter, the concept of a Prolog agent is further
developed and two important kind of agents, Prolog toplevels and Prolog nodes, will
be introduced and their roles in the ecosystem explained.

The reason for referring to both actors and nodes as agents is to focus on their
similarities. The similarity that makes use refer to both of them as Prolog agents is
that they are both processes that are capable of talking Prolog to other agents. Also,
they both live on the Prolog Web.

There are of course differences as well. A node is typically long-lived. It is capable
of servingmany clients at the same time. It can be programmed, but only by its owner.

2.1 The concept of an agent

In Russell and Norvig [38] an agent is characterized as “anything that can be viewed
as perceiving its environment through sensors and acting upon that environment
through effectors.” It does not get more abstract than that, as it covers just about
everything from a simple reactive agent such as a thermostat to a complex cognitive
agent such as a human.

In this book, however, we shall be somewhat more concrete and care mostly about
the concept of a software agent, i.e. an agent implemented in software and running

47
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on computer hardware. The concept of software agent might be more appropriately
defined as a software process capable of continious interactionwith theworld external
to it. This definition of agenthood is admittedly very simple. It leaves out properties
such as autonomy and goal-directedness, properties other researchers use in order
to demarcate software agents from ordinary executing programs.1 By our definition,
any running program is an agent, as long as it is an interactive program.2

Software agents living in web-based environment form a category on its own. We
shall refer to them as web agents. A web agent, in the context of the internet and
web technology, typically refers to a program or script that performs automated tasks
or interacts with web services on behalf of a user or another program. Some such
agents are also known as bots or web crawlers. They can serve various purposes,
such as web scraping, data collection, automated form submission, or even chatbots
that interact with users on websites.

In the context of computer science and artificial intelligence, “spawning an agent”
typically refers to the creation or instantiation of a new software agent froman existing
one, resembling the parent-child relationship seen in biological reproduction. This
process is akin to the notion of giving birth, where a “parent agent” generates a
“child agent.”

The parent agent is responsible for initiating and managing the child agent’s
execution. This can involve allocating resources, defining the child agent’s initial
state, and establishing communication channels between the parent and child agents.
The child agent inherits certain characteristics or behaviors from its parent but may
also possess its own unique attributes or functionalities.

This concept is frequently encountered in multi-agent systems, distributed com-
puting environments, and parallel processing scenarios, where the dynamic creation
of agents allows for increased flexibility and scalability in handling tasks and solving
complex problems.

2.2 Prolog agents in a nutshell

A Prolog agent is an executing software process on the Prolog Web which is ca-
pable of continuous interaction with other Prolog agents in its environment using
Web Prolog as a dedicated agent communication language (or an ACL, to use the
commonly employed acronym). In this book, we deal primarily with Prolog agents
that live on the Web, or in other words, that are web agents. Note that if taken as a
definition it does not require that a Prolog agent is written in Web Prolog, only that
it can talk Prolog.

1We agree with Russell and Norvig in [38] when they state that “[the] notion of an agent is meant to
be a tool for analyzing systems, not an absolute characterization that divides the world into agents
and non-agents,” so we do not elaborate further on this.
2 Thus, Turing machines are not agents, since they are not interactive.
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As suggested by the taxonomy in Figure 2.1, Prolog agents come in different
shapes and sizes, and as suggested by the diagram, they can be arranged into a
simple taxonomy.

Fig. 2.1 A taxonomy of Prolog agents.

Prolog nodes (or just nodes) serve as the runtime systems of Web Prolog, and in the
context of this book they will be regarded as agents. Prolog actors – very similar
to what the Erlang community refer to as processes – are the loci of computation
in the Prolog Trinity ecosystem. Prolog actors satisfy our definition of agenthood
since they are processes capable of talking to other processes in their environment.
As actors, they are all equipped with a mailbox from which messages received can
be selected, and they can send messages to other agents. An actor can also spawn a
child actor configured in all sorts of ways by means of options.

There are different kinds of actors such as toplevels and statechart actors, and
there is a potential for other kinds of actors with other behaviors, some very specific,
others generic. The ... in the diagram is a place holder for future such agents, and
also covers actors such as echo actors and count actors. Chapter 1 looked at many
examples of such actors in action.

An explanation of what we mean by a statechart actor will have to wait until
Chapter ??. Suffice it to say that it is a way to program an actor using a (partly)
visual programming language called statecharts, invented by David Harel (who is
featured among the other inventors in Chapter ??). The relevancy to the Prolog
Trinity ecosystem is that such actors can use Web Prolog as a data modelling and
scripting language.

If toplevels and other actors are considered agents, it follows that they represent
a rudimentary form of agency, characterized by minimal complexity in decision-
making and autonomy.While these agents exhibit basic properties such as autonomy,
interaction, and task-specific behavior, these characteristics alone may not suffice for
what might be considered a fully autonomous agent. A more robust agent, such
as a “soft robot” interacting with and adapting to its environment, would require
additional cognitive capabilities, such as the ability to form desires and intentions,
as outlined in the belief-desire-intention (BDI) framework.
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Despite this, we remain satisfied with our simple agents, whether they function as
nodes, toplevel actors, statechart actors, or other specialized entities. These agents
have proven to be incredibly useful in their current form, particularly in web envi-
ronments where their simplicity allows for ease of deployment and scalability. The
utility of these agents is further enhanced by their ability to be composed into more
complex systems, enabling the emergence of more sophisticated behaviors.

Moreover, it is important to recognize that “real” agents can be constructed from
networks or societies of these simple agents. This modular approach enables the
development of more advanced agents, such as those adhering to the BDI model, by
building on the cooperative interactions of basic components.

2.3 More about Prolog actor agents

In the Erlang community, many actors, including actors with a very specific func-
tionality such as echo actors and count actors, but also those that are generic such as
compute servers, can be described in this way. Of, course, there are clients too, and
other programs that cannot be described in this way.

Most actors comes with a communication protocol, i.e. a set of rules and con-
ventions that govern how different actors (and other software processes) interact and
communicate with each other.

2.3.1 An actor agent is equipped with a private Prolog database

So far, we have been a bit vague on where the code being executed came from. The
only hint given was that it might be stored in the node’s shared database, defining
data and programs that can be used by any actor that lives there. We shall say
more about such code further ahead in this chapter, but first we will introduce an
area inside the actor where code might reside, as well as a way to make data and
programs available to an actor.

An actor agent is equipped with a private Prolog database, where programs and
data that may only be accessed and used by this particular actor is stored. All actors
have such a database, but initially it may be empty. When it is not empty, its content
should be contrasted with the programs and data that are shared among all actors
that are present on a node, predicates that are loaded into the node’s shared Prolog
database.

When performing the spawn operation, the (soon-to-become) parent actor can
choose to populate the private database of the child actor with new programs and
data not present in the node’s shared database.

The clauses in this database represent the agent’s private beliefs and skills – in
contrast to beliefs and skills that it shares with other actor agents running on the
same node.
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Fig. 2.2 The anatomy of a Prolog actor. Now complete with its private Prolog database.

Consider the following example where the load_text option is passed to spawn/3,
specifying that the source code for our count server should be loaded into the actor’s
private database before calling the goal in the first argument:

?- spawn(count_actor(0), Pid, [
load_text("

count_actor(Count0) :-
receive({

count(From) ->
Count is Count0 + 1,
From ! count(Count),
count_actor(Count) ;

stop ->
true

}).
")

]).
Pid = 45092311.
?-

In addition to the load_text option, three other options can be used to populate
the private database of an actor. The load_list options loads a list of clauses
or directives, the load_uri option loads the content specified by a URI, and
load_predicates takes a list of predicate indicators and loads the clauses for
the indicated predicates that are accessible by the caller.

It is possible to pass an arbitray number of the load_* options to spawn/3,
and possibly more than one instance of each. To ensure that clauses end up in a
well-defined order, they will all be converted into Prolog source text before finally
being loaded into the database. The order of clauses and directives in the source text
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is determined by the order of the load_* options in the list of options passed to
spawn/3.

Note that the code that will eventually be executed by the call to spawn/3 depends
not only on what has been loaded into the private database of an actor, but also on
the contents of the node’s shared Prolog database. We shall return to this later in this
chapter.

2.3.2 The dynamic (and still private) Prolog database

As long as the actor process is alive, it is allowed to update its private database
using predicates such as assert/1, retract/1 and retractall/1. Following the
ISO standard, predicates that are modified this way need to be declared using the
dynamic/1 directive. Updates will only affect that actor’s workspace, not actors
running elsewhere, and not even actors running on the same node.

This means that problems caused by two or more processes trying to update
the same database simultaneously cannot arise. It also means that since database
updates performed by one process is not seen by other processes, assert and retract
cannot be used for inter-process communication. Web Prolog adheres to the idea
that processes should “communicate to share memory, rather than share memory to
communicate".3

Therefore, although the following goal is permitted, it is quite meaningless since
the clause foo(a) disappears as the goal has run and the spawned process has
terminated.

?- spawn(assert(foo(a)), Pid).
Pid = 32861299.
?-

The dynamic database provides another way to transfer from one state to the next.
Here is an example:

?- spawn(count_actor, Pid, [
load_text("

:- dynamic cnt/1.

cnt(0).

count_actor :-
receive({

count(From) ->
retract(cnt(Count0)),
Count is Count0 + 1,
From ! count(Count),

3 A mantra attributed to CSP.
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assert(cnt(Count)),
count_actor ;

stop ->
true

}).
")

]).
Pid = 99801234.
?-

In this case, the use of the dynamic database is a very bad idea.

2.4 Prolog shells and other toplevel actors are agents

As we saw already in Chapter 1, if self/1 is called in a terminal, its argument gets
bound to an pid, and this pid points to a Prolog shell:

?- self(Pid).
Pid = 72097632.
?-

Here, the actor with the pid 72097632 is a shell. Shells are toplevels, and therefore
also agents. Shells handle all the things that toplevels handle, but also adds a number
of useful things for when we are talking to Prolog over a terminal. This includes I/O
(read and write) and utilities such as flush/1 and the dollar notation. Such features
are supplied by the node controller rather than a toplevel alone. (We will say more
about the node controller further ahead in this chapter.)

Here is how we instruct the shell to spawn a new toplevel:

?- toplevel_spawn(Pid).
Pid = 16226587.
?-

Note that 16226587 is a toplevel actor but not a shell. As with every other Prolog
actor, it comes with a mailbox, a private Prolog database, the ability to send mes-
sages to other actors, as well as the ability to create other actors. The feature that
distinguishes a toplevel from other actors is that it comes with a standardized built-in
special-purpose communication protocol, the PTCP.

2.4.1 A Prolog toplevel is an actor with a built-in protocol

Aprogrammer firing up a traditional Prolog system is likelymet with a query prompt.
In the literature, this is usually referred to as the toplevel. The reason we refer to it
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Fig. 2.3 The anatomy of a Prolog toplevel actor.

a shell is because we want to use the term toplevel to refer to toplevels that are not
shells.

In traditional Prolog, a program cannot internally create a toplevel, pose queries
and request solutions on demand, but this is something that Web Prolog allows. In
traditional Prolog the toplevel is lazy in the sense that new solutions to a query are
only computed on demand. As we shall see, this is how the toplevel actor in Web
Prolog works too.

In Web Prolog, a toplevel actor is a programming abstraction modelled on the
interactive toplevel of Prolog. A toplevel actor is like a first-class interactive Prolog
toplevel, accessible from Web Prolog as well as from other programming languages
such as JavaScript. We can also think of it as an encapsulated Prolog session, an
abstraction aiming at making Prolog programmers feel right at home.

A toplevel is a kind of actor, and what distinguishes it from other kinds of actors
is the protocol it follows when it communicates, i.e. the kind of messages it listens
for, the kind of messages it sends and in what order, and the behavior this gives rise
to.

The protocol must not only allow a client to submit queries and a toplevel to
respond with answers, it must also allow the toplevel to prompt for input or produce
output at any time, in an order and with a content as dictated by the program that
it runs. All toplevels follow this protocol. The terminal adheres to it as well, and
even a human user of a terminal talking to a shell must adapt to it in order to have a
successful interaction.

The design of the toplevel actor in Web Prolog is in fact very much inspired by
the informal communication protocol that we as programmers adhere to when we
invoke a Prolog shell from our OS prompt, load a program, submit a query, are
presented with a solution (or a failure or an error), type a semicolon in order to
ask for more solutions, or hit return to stop. These are “conversational moves” that
Prolog understands. There are even more such moves, since after having run one
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query to completion, the programmer can choose to submit another one, and so on.
The session does not end until the programmer decides to terminate it. There are
only a few moves a client can successfully make when the protocol is in a particular
state, and the possibilities can easily be described, by a state machine for example,
as will be shown in the next section.

2.4.2 The Prolog Toplevel Communication Protocol

Figure 2.4 depicts a statechart specifying the Prolog Toplevel Communication Pro-
tocol (PTCP) – a protocol for the communication between a client and a toplevel
actor. The client can be any process (including another actor or (say) a JavaScript
process) capable of sending the messages and signals in bold to the toplevel. The
toplevel actor is responsible for returning the messages with a leading / back to the
client. The use of a statechart allows us to show that no matter the current state of the
protocol, abort will always take it to the state from which a new goal can be called
and exit will always terminate the toplevel process.

/error

/failure

/success(false)

call

/success(true)

next

   stop

exit

abort
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Fig. 2.4 Statechart specifying the PTCP for a successful conversation with a toplevel. The transi-
tions are labeled with message types. Types in bold are sent from the client to the toplevel, whereas
message types with a leading / goes in the opposite direction, from the toplevel to the client.

A process is able to spawn a toplevel. After having done so, the process becomes
the parent of the toplevel and can start communicating with it according to the
protocol. Initially, the protocol is in state s1, where the toplevel rests idle, waiting
for a call message containing a goal. When such a message arrives, the protocol
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transitions to state s2, where the toplevel is actually doing work. The protocol will
remain in state s2 until somework is done and the toplevel sends amessage indicating
either /success, /failure, /error, or (if the process is monitored) /down to the
client. On the event of the toplevel sending /failure or /error, the protocol will
transition back to state s1. This will be the case also for a /success message that
indicates no more solutions to the query can be found (marked with false in the
chart). However, if a /successmessage indicates more solutions may exist (marked
with true in the chart), the protocol transitions to state s3, where it will wait for a
message next, stop, abort or exit to arrive from the client. If the message is stop
or abort the protocol will transition back to state s1, if it is next it will transition
to state s2 and trigger the search for more solutions, and finally, if it is exit, it will
(if the process is monitored) force the toplevel to send a message /down back to the
client and then to terminate. Any other messages will be deferred to the program
being executed by the toplevel.

Web Prolog comes with six built-in predicates which allow a client to spawn a
toplevel actor and interact with it through its life-cycle:

toplevel_spawn/1-2 toplevel_call/2-3 toplevel_next/1-2
toplevel_stop/1-2 toplevel_abort/1 toplevel_exit/1

Such predicates are defined in terms of the more primitive spawn/1-3, !/2 and
receive/1-2 predicates, but they also comes with a number of new options. Their
uses will be demonstrated in the next section, and Appendix A contains an excerpt
from the (draft) manual which covers most of the details of our proposal.

2.4.3 Shell talking to a Prolog toplevel

Below, we show an example of how to create and interact with a toplevel process
from a shell. We start by spawning a new toplevel, using toplevel_spawn/3 with
the monitor option to instruct the toplevel to send us a down message when the
process eventually terminates. The load_list option is used to populate the private
Prolog database belonging to the toplevel actor with two simple unit clauses p(a)
and p(b):

?- toplevel_spawn(Pid, [
monitor(true),
load_list([p(a),p(b)])

]).
Pid = 74122981.
?-

With this, the toplevel actor is initiated, and with the PTCP now in state s1, it is
ready to accept messages and signals sent by the other toplevel_* predicates.

The monitor and load_list options are inherited from spawn/2-3. However,
toplevel_spawn/3 offers two new options that can be used to specify the behavior
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of toplevels that are spawned. The session option configures the toplevel to run a
multi-query session rather than exit after just one query. It is true by default. The
target option can be used to redirect the answermessages arriving from the toplevel
to any actor of choice. By default, it is set to the pid of the parent. We say more about
their use further ahead in this chapter.

2.4.3.1 Making the toplevel call a goal

Let us see what happens if we call toplevel_call/2 with the default values for
options:

?- toplevel_call($Pid, p(X)).
true.
?- flush.
Shell got success(74122981,[p(a),p(b)],false)
true.
?-

The answer is returned to the mailbox of the calling process in the form of a Prolog
term with three arguments. The functor of the answer term represents its type. In this
case, it shows that the goal succeeded. (In other cases it might indicate a failure or
an error.) The first argument of the success term is the pid, and the list in the second
argument represents the two solutions that was computed. The value false in the
third argument of the term indicates that no more solutions exist.

After a brief visit to state s2 for the execution of the goal, the PTCP is now back
in state s1.

2.4.3.2 Using the template option

Below, toplevel_call/3 is called with the goal p(X) and with the template
option set to the variable X:

?- toplevel_call($Pid, p(X), [
template(X)

]).
true.
?- flush.
Shell got success(74122981,[a,b],false)
true.
?-

Note how the value of the template option determined the form of the list of
solutions in the second argument of the answer term. The relation to the Prolog
built-in standard predicate findall/3 is evident.
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2.4.3.3 Using the offset and limit options

When querying a relational database using SQL or an RDF dataset using SPARQL,
the use of OFFSET and LIMIT serves to control the subset of results that are returned
by a query.

The limit option specifies the maximum number of solutions to return, while
the offset option specifies the number of solutions to skip before starting to return
solutions.

?- toplevel_call($Pid, between(1,infinite,I), [
template(I),
offset(100),
limit(3)

]).
Pid = 74122981.
?- flush.
Shell got success(74122981,[101,102,103],true)
true.
?-

Calling toplevel_next/1 produces three more solutions:

?- toplevel_next($Pid).
true.
?- flush.
Shell got success(74122981,[104,103,106],true)
true.
?-

However, toplevel_next/2 accepts the limit option too:

?- toplevel_next($Pid, [
limit(5)

]).
true.
?- flush.
Shell got success(74122981,[107,108,109,110,111],true)
true.
?-

2.4.3.4 A toplevel can do a kind of I/O

Whenever a toplevel is in state s2 and doing some real work, it is able to send
messages to its parent using the usual send operator. However, a better idea can often
be to use output/1, a built-in predicate that in its simplest form can be defined like
so:
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output(Message) :-
self(Self),
parent(Parent),
Parent ! output(Self, Message).

Since the message is wrapped in a binary term with the pid of the toplevel in its first
argument, the parent will always know if the message came from the right toplevel.

There is also output/2, which expect the option target to specify a target
different from the parent.

(By the way, output/1-2 can be used from any actor, not only from a toplevel.)
Now, let us demonstrate how I/O works:

?- toplevel_call($Pid, output(hello)).
true.
?- flush.
Shell got output(74122981,hello)
Shell got success(74122981,[output(hello)],false)
true.
?-

Input can be collected by calling input/2, which sends a prompt message to the
client, which in turn can respond by calling respond/2:

?- toplevel_call($Pid, input(’Input’, X)),
receive({Answer -> true}).

Answer = prompt(74122981,’Input’).
?- respond($Pid, hello),
receive({Answer -> true}).

Answer = success(74122981,[input(’Input’,hello)],false).
?-

2.4.3.5 Aborting a non-terminating goal

The toplevel is still not dead so let us see what happens when we ask the toplevel to
first update its private Prolog database with a silly recursive clause for a predicate
p/0 and then call it:

?- toplevel_call($Pid, assert((p :- p))),
receive({Answer -> true}).

Answer = success(74122981,[assert((p:-p))],false)
?- toplevel_call($Pid, p).
true.
?-

Although nothing is shown in the terminal, it is clear that the toplevel is now just
wasting CPU cycles to no avail. Fortunately, a non-terminating goal can be aborted
by calling toplevel_abort/1:
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?- toplevel_abort($Pid).
true.
?-

With this, the PTCP is back in state s1.

2.4.3.6 Redirecting answers

The option target allows us to instruct a toplevel actor to send answer terms to a
destination different from the parent. To demonstrate how this works, we first create
a simple actor that can serve as a target:

?- spawn(( repeat,
receive({

Msg ->
format("Received ~p~n", [Msg]),
fail

})
), Pid0).

Pid0 = 98380209.

Its pid is used as the value of the target option:

?- toplevel_spawn(Pid, [
target($Pid0)

]).
Pid = 97919106.
?-

The success term is printed, and calling flush/0 shows that the mailbox belonging
to the shell is empty:

?- toplevel_call($Pid, between(1,1000,N), [
template(N),
limit(5)

]).
true.
Received success(97919106,[1,2,3,4,5],true)
?- flush.
true.
?-

The target option is supported by all toplevel_* predicates, which allows us to
direct the answer terms back to the shell. The only exception is toplevel_stop/1:

?- toplevel_stop($Pid).
Self = 34712309.
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?- flush.
true.
?-

2.4.3.7 Exiting the toplevel

When we are done talking to the toplevel we can kill it. As the monitor option was
set to true, we should expect to receive a down message:

?- toplevel_exit($Pid, goodbye),
receive({Answer -> true}).

Answer = down(74122981,goodbye).
?-

Clearly, a Prolog toplevel is a kind of server (in the sense of Erlang – see Sec-
tion 1.4.3). Also, note that a toplevel, even when not explicitly threading any state,
nor using the dynamic database, must still be considered stateful. Rather than using
an explicit data structure for holding the state, it is the underlying Prolog process as
such that holds it, most clearly shown in the way the toplevel “remembers” its history
and how its behavior is influenced by this, enabling it to react appropriately when a
client requests the next solution to a query.

2.4.4 Toplevels and the message deferring mechanism

In the following example, a toplevel is spawned, and then toplevel_next/1 is
called. The protocol is obviously not in a state where it can react on the next
message (see Figure 2.4). The message is therefore deferred and it is not until
toplevel_call/3 is called and the protocol changes states that it has an effect.

?- toplevel_spawn(Pid).
Pid = 78340943.
?- toplevel_next($Pid).
true.
?- flush.
true.
?- toplevel_call($Pid, member(X,[a,b,c]), [

limit(1),
template(X)

]).
true.
?- flush.
Shell got success(78340943, [a], true)
Shell got success(78340943, [b], true)
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true.
?-

Note that messages sent to a toplevel will often (always?) be handled in the right
order even if they arrive in the “wrong” order (e.g. next before call). This is due to
the selective receive which defers their handling until the PTCP protocol permits it.
The messages abort and exit, however, will never be deferred. This is guaranteed
by the fact that abort and exit are valid transitions from any state in the protocol
(see Figure 2.4). (They are actually signals rather than messages).

One way to think of this is in terms of the so called robustness principle: “Be
conservative in what you send, be liberal in what you accept.”4 Due to the deferring
behavior a toplevel is liberal in this way, but, as implied by the principle, clients are
advised not to rely on this behavior.

2.4.5 Reconstructing findall/3

Ifwe did not already have a built-in predicatefindall/3wecould have implemented
it like so:

findall(Template, Goal, Solutions) :-
toplevel_spawn(Pid, [

session(false)
]),
toplevel_call(Pid, Goal, [

template(Template),
limit(none)

]),
receive({

success(Pid, Solutions, false) ->
true ;

failure(Pid) ->
Solutions = [] ;

error(Pid, Error) ->
throw(Error)

}).

It may not make much sense to do it like this, but at least it says something about the
relation between findall/3 and the toplevel_* predicates.

4 https://en.wikipedia.org/wiki/Robustness_principle
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2.4.6 A synchronous predicate API to toplevels

The communication between a client and a toplevel illustrated above is asynchronous,
but if we want, it is quite easy to define a synchronous alternative using a technique
we have already seen. A predicate wait_for_answer/3 can be defined like so:

wait_for_answer(Pid, Answer, Options) :-
receive({

Answer if arg(1, Answer, Pid) ->
true

}, Options).

Then toplevel_call_synch/3-4 can be implemented as follows:

toplevel_call_synch(Pid, Goal, Answer) :-
toplevel_call_synch(Pid, Goal, Answer, []).

toplevel_call_synch(Pid, Goal, Answer, Options) :-
toplevel_call(Pid, Goal, Options),
wait_for_answer(Pid, Answer, Options).

and toplevel_next_synch/2-3 like so:

toplevel_next_synch(Pid, Answer) :-
toplevel_next_synch(Pid, Answer, []).

toplevel_next_synch(Pid, Answer, Options) :-
toplevel_next(Pid, Options),
wait_for_answer(Pid, Answer, Options).

Note that since toplevel_stop/1 does not produce a response message, no
toplevel_stop_synch/2-3 is defined, and toplevel_stop/1 can be used as
it is.

Here is a simple test that shows how it works:

?- toplevel_spawn(Pid).
Pid = 67590967.
?- toplevel_call_synch($Pid, mortal(X), Answer, [limit(1)]).
Answer = success(67590967, [mortal(socrates)], true).
?- toplevel_next_synch($Pid, Answer).
Answer = success(67590967, [mortal(plato)], true).
?- toplevel_next_synch($Pid, Answer).
Answer = success(67590967, [mortal(aristotle)], false).
?-





Chapter 3
The Prolog Web

Imagine the Web wrapped in Prolog, running on top of a distributed architecture comprised
of a network of nodes supporting HTTP and WebSocket APIs, as well as web formats such
as JSON. Think of it as a high-level Web, with Prolog Agents capable of serving answers
to queries – answers that follow from what the Web knows. Moreover, imagine it being
programmable and allowing Web Prolog source code to flow in either direction, from the
client to the node or from the node to the client. This is what the Prolog Web is all about.

The Prolog Web – the elevator pitch

An important feature thatWeb Prolog has in commonwith Erlang is that concurrency
is network transparent so that spawning and sendingwork also in a distributed setting.
If we know the URI of a node and are authorized we can spawn an actor there, and
if we know the pid of an actor process then we can send a message to it, even if it is
running on another node. Indeed, all the mechanisms we have described – spawning,
sending, linking, monitoring, registering, and so on – work transparently across node
boundaries, making it easy to write distributed programs.

3.0.1 Actor talking to remote actor

For specifying the URI of the node on which we wish to create an actor process, the
spawn/3 predicate can be passed the option node. In the folllowing example, we
use the load_text option to ship the predicate implementing our echo server to the
node http://n8.org, invoke it there, monitor the process, and register it:

?- spawn(echo_actor, Pid, [
node(’http://n8.org’),
load_text("

echo_actor :-
receive({

echo(From, Msg) ->
From ! echo(Msg),

65
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echo_actor
}).

"),
monitor(true)

]),
register(echo_actor, Pid).

Pid = 99231321@’http://n8.org’.
?-

Note that the pid is now a complex term and consists of a combination of an integer
and a URI paired together by the at sign infix operator @.

Here is a short example of a conversation we can have with our remote echo
server:

?- self(Self),
echo_actor ! echo(Self, hello).

Self = 71773120.
?- flush.
Shell got echo(hello)
true.
?- whereis(echo_actor, Pid),
exit(Pid, stop).

Pid = 99231321@’http://n8.org’.
?- flush.
Shell got down(99231321@’http://n8.org’,stop)
true.
?-

3.0.2 Actors playing ping-pong

If the option node(’http://n2.org’) is passed to any of the calls to spawn/3 in
Section 1.4.8, the game of ping-pong will be played between two nodes:

ping_pong :-
spawn(pong, Pong_Pid, [

node(’http://n2.org’)
]),
spawn(ping(3, Pong_Pid)).

Figure 3.1 illustrates this scenario.
But why do we get the output written by the “pinger” only, and not the output

from the “ponger?” The reason is that a shell can only receive and render output
that is written from actors that 1) live on the same node as the toplevel process to
which the terminal is attached, and 2) are descendants of this toplevel process. (This
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Fig. 3.1 A ping-pong scenario.

restriction may be lifted in the future.) In any case, our readers may rest assured that
the actors really do play ping-pong.

What if the definition of pong/1 is available at n1.org, but not at n2.org? The
load_predicates option ensures that the appropriate source code is injected into
the private database of the actor that will run at n2.org:

ping_pong :-
spawn(pong, Pong_Pid, [

node(’http://n2.org’),
load_predicates([pong/1])

]),
spawn(ping(3, Pong_Pid)).

In addition to the load_predicates option, spawn/2-3 supports a number of other
options which provide alternative ways to inject source code into the workspace of
an actor.
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3.0.3 Node-resident actor processes

In addition to node-resident source code, the owner of a node may install node-
resident actor processes. We show an example below which uses register/2 to
give a running count actor a mnemonic name:

?- spawn(count_actor(0), Pid),
register(counter, Pid).

Just like in Erlang, the registered name can be used instead of the pid when sending
to the process:

?- self(Self).
Self = 51230945.
?- counter@’http://n1.org’ ! count($Self),
receive({Count -> true}).

Count = 1.
?- counter@’http://n1.org’ ! count($Self),
receive({Count -> true}).

Count = 3.
?-

Contrary to an actor injected and spawned by a client, a node-resident actor is
accessible from any client to the node that knows its registered name. (This explains
why 3 rather than 2 was received in the example – another client happened to
increment the counter.)

As another example, here is all that is needed for a simple publish-subscribe
service:

pubsub_service(Subscribers0) :-
receive({

publish(Msg) ->
forall(member(Pid, Subscribers0), Pid ! msg(Msg)),
pubsub_service(Subscribers0);

subscribe(Pid) ->
pubsub_service([Pid|Subscribers0]);

unsubscribe(Pid) ->
( select(Pid, Subscribers0, Subscribers)
-> pubsub_service(Subscribers)
; pubsub_service(Subscribers0)
).

}).

We will assume the owner of a node has started the service by running the following
goal:

?- spawn(pubsub_service([]), Pid),
register(pubsub_service, Pid).
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In the following example we subscribe to the service, and invoke a repeat-fail loop
waiting for messages to arrive from it:

?- self(Self),
pubsub_service ! subscribe(Self),
repeat,
writeln("Waiting for a message ..."),
receive({

msg(Message) ->
format("Received: ~p~n", [Message]),
fail

}).
Waiting for a message ...
Received: hello
Waiting for a message ...

The message “hello” was received when someone with a connection to the same
node published it to the service using the following kind of call:

?- pubsub_service ! publish(hello).
true.
?-

Node-resident actors are usually of a kind that we do not want unauthorized external
clients to be able to create (or destroy). Doing this should be the privilege of the
owner of the node or other authenticated users with the right authorities.

This is a simple pub-sub model designed for demonstration purposes, but it can
be extended to meet various performance and scalability requirements. Possible
improvements include increasing the fault tolerance by using a supervision tree to
manage the actor process running pubsub_service/1, restart it if it crashes, and
manage state recovery. Subscriptions might be stored in a more persistent store if
needed, and we might want to optimize for large numbers of subscribers using more
efficient data structures if scaling is needed.

3.0.4 The node option works for toplevels too!

It should come as no surprise that the node option can also be used to create a
toplevel on a remote node. Suppose the node on which our shell runs have a shared
database that contains the following clauses:

husband(Wife, Husband) :- wife(Husband, Wife).

wife(socrates,xantippa),
wife(aristotle,pythias)

Also, suppose that we create a toplevel child on http://n1.org like so:
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?- toplevel_spawn(Pid, [
node(’http://n1.org’),
session(true),
monitor(true),
load_predicates([

husband/2,
wife/2

])
]).

Pid = 74122981@’http://n1.org’.
?-

Given the pid returned, toplevel_call/3 can now be called with the goal
husband(Wife,Husband):

?- toplevel_call($Pid, husband(Wife,Husband)).
true.
?- receive({

success($Pid, Data, false) ->
true

}).
Data = [husband(xantippa,socrates),husband(pythias,aristotle)]
?-

3.1 The sequential Prolog Web

On the concurrent Prolog Web, tasks are not only distributed, they are also executed
during overlapping periods of time. This is a model that can be hard to control and
where backtracking over nodes is performed in a way that may seem odd.

We will now present a model where tasks are distributed sequentially among
different nodes in the network. Each node might perform its task in sequence, but
overall, the system is still distributed because the tasks are spread across multiple
nodes.

3.1.1 Non-deterministic remote procedure calls

In Web Prolog, rpc/2-3 is a very high-level meta-predicate for making non-
deterministic remote procedure calls. It allows a process running in a node N1
to call and try to solve a query in the Prolog context of another node N2, taking
advantage of the data and programs being offered by N2, just as if they were local to
N1. Such calls are synchronous, and this makes rpc/2-3 remarkably easy to use for
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the distribution of programs over two or more nodes. It is a predicate for distributed
programming that trades concurrency for ease of programming.

A Web Prolog client processes queries at a remote node by making an rpc/2-3
call with the first argument a URI pointing to the node, and the second argument a
goal to be run over the predicates offered by it. The third argument expects a list of
options. Here is an example of how rpc/2-3 can be used:

?- rpc(’http://n1.org’, mortal(Who), [
load_list([(mortal(Who) :- human(Who))])

]).
Who = plato ;
Who = aristotle.
?-

Note that solutions are given on demand and in the usual one-solution-at-a-time
fashion, as bindings of variables that occur in the goal.

There are eight billion humans on Earth, so how would rpc/3 cope if they were
all represented by human/1?

?- rpc(’http://n1.org’, mortal(Who), [
load_list([(mortal(Who) :- human(Who))]),
limit(1000)

]).

The value 1000 of the option limit told rpc/3 to limit the number of solutions it
should compute during one network roundtrip to one thousand. So in this case it had
to make eight million roundtrips.

A notable property of rpc/2-3 is that it retains the logical purity of the goal that
it calls, so that if the goal is pure, then the entire call is pure.1 Further ahead we shall
argue that it makes the notion of a pure Prolog Web a coherent proposition.

3.1.2 Implementing rpc/2-3 on top of a toplevel actor

Below, we show an implementation of rpc/2-3 which is built on top of a toplevel
spawned on a remote node and a local loop that waits for answers arriving from it:

rpc(URI, Goal) :-
rpc(URI, Goal, []).

rpc(URI, Goal, Options) :-
toplevel_spawn(Pid, [

node(URI),
session(false)

1 This is a property which it shares with the call/N family of Prolog predicates.
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| Options
]),
toplevel_call(Pid, Goal, Options),
wait_answer(Pid, Goal).

wait_answer(Pid, Goal) :-
receive({

success(Pid, Slice, true) ->
( member(Goal, Slice)
; toplevel_next(Pid),

wait_answer(Pid, Goal)
) ;

success(Pid, Slice, false) ->
member(Goal, Slice) ;

failure(Pid) -> !, fail ;
error(Pid, Error) ->

throw(Error)
}).

When spawning the toplevel we pass session(false) in order to make sure that
the process terminates when the first query being sent to it has run to completion.
Note also that we do not monitor the spawned process. Thus, when the query has run
to completion, no down message is going to come along and report this, and so the
process running the wait_answer/2 predicate does not have to bother looking for
this message in its mailbox. It can safely terminate on failure, error or when having
visited the last solution in the last success message received from the node.

The first clause of the implementation shows clearly how the inheritance of options
from toplevel_spawn/2 and toplevel_call/3 to rpc/2-3works. Note that the
value of an option passed explicitly to toplevel_spawn/2 takes precedence over
the value of the same option if it’s given in the third argument of rpc/3. Thus, the
only options that can have an effect in a call to rpc/3 are the timeout and the
load_* options.

The most interesting parts of the implementation are the use of the disjunction
in the body of the first receive clause and the use of member/2 in the first and
second clauses. They are responsible for turning the deterministic calls made by
toplevel_call/3 and toplevel_next/1 into the non-deterministic behavior we
want rpc/2-3 to have.

The third receive clause is triggered by the appearance in the mailbox of a
failure answer term, and simply causes rpc/2-3 to fail, and if triggered by an
error message the fourth clause rethrows the error.

Note that since the client actor and the remote toplevel do not execute different
tasks during overlapping periods of time, no real parallelism is taking place here.
Also, the communication is synchronous. Thus, rpc/2-3 can only contribute to a
partition of the Prolog Web that is synchronous and sequential.



3.1 The sequential Prolog Web 73

3.1.3 Template packing and output elimination

While rpc/2-3 does not support the template option, this option is useful in
the implementation of rpc/2-3 as it can reduce the size of the payload sent by
toplevel_call/3 over the network by almost half. The idea is to form a template
by wrapping the goal variables in a term. To accomplish this, the ISO predicate
term_variables/2 can be used in combination with the so-called univ operator
(=..). We refer to the technique as template packing and demonstrate it in the code
below:

rpc(URI, Goal, Options) :-
toplevel_spawn(Pid, [

node(URI),
session(false)

| Options
]),
term_variables(Goal, Vars),
Template =.. [v|Vars],
toplevel_call(Pid, Goal, [

template(Template)
| Options

]),
wait_answer(Pid, Template).

wait_answer(Pid, Template) :-
receive({

success(Pid, Slice, true) ->
( member(Template, Slice)
; toplevel_next(Pid),

wait_answer(Pid, Template)
) ;

success(Pid, Slice, false) ->
member(Template, Slice) ;

failure(Pid) -> !, fail ;
error(Pid, Error) ->

throw(Error) ;
Any if arg(1, Any, Pid) ->

wait_answer(Pid, Template)
}).

Note that we now need to pass the template rather than the goal in the call to
wait_answer/2, which on backtracking will be repeatedly unified with elements of
the slices of solutions arriving from the remote toplevel process. Sharing of variables
between the goal and the template takes care of the instantiation of the goal.
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The last clause in the call to receive/1 catches any other ouput that might arrive
from the remote toplevel, such as messages of the form output(Pid, Data) or
prompt(Pid, Data). This is what we refer to as output elimination.
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Appendix A
Excerpt from the draft manual

A.1 Predicates for programming with actors

Predicate: self/1 actor

self(-Pid) is det.

Binds Pid to the process identifier of the calling process.

Predicate: spawn/1-3 actor

spawn(+Goal) is det.
spawn(+Goal, -Pid) is det.
spawn(+Goal, -Pid, +Options) is det.

Creates a new Web Prolog actor process running Goal. Valid options are:

• node(+URI)
Creates the process on the node pointed to by the URI. Default is localhost.

• monitor(+Boolean)
If true, sends a down message to the parent process when the spawned process
terminates. Default is false.

• link(+Boolean)
If true, terminates all child processes (if any) upon termination of the spawned
process. Default is true.

• timeout(+IntegerOrFloat)
Terminates the spawned process (or the process of spawning a process) after
IntegerOrFloat seconds.

• load_text(+AtomOrString)
Loads the clauses specified by a Web Prolog source text into the actor’s private
Prolog database before calling Goal.

• load_list(+ListOfClauses)
Loads a list of Web Prolog clauses into the actor’s private Prolog database before
calling Goal.
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• load_uri(+URI)
Loads the clauses specified by the Web Prolog source text at URI into the actor’s
private Prolog database before calling Goal. Goal.

• load_predicates(+ListOfPredicateIndicators)
Loads the local predicates denoted by ListOfPredicateIndicators into the
actor’s private Prolog database before calling Goal.

• type(+Atom)
Indicates the type of the source to be injected into the process. Default is
’web-prolog’. Note that some load_* options may not be compatible with
other values of this option.

Predicate: monitor/1 actor

monitor(+Pid) is det.

Begin monitoring the process Pid.

Predicate: demonitor/1 actor

demonitor(+Pid) is det.

Stop monitoring the process Pid.

Predicate: register/2 actor

register(+Name, +Pid) is det.

Register a process under a name, where Name is an atom and Pid identifies the actor
process. The association between the name and the pid will be removed when the
process terminates.

Predicate: whereis/2 actor

whereis(+Name, ?Pid) is det.

Locate the process associated with the name. Returns undefined if the process does
not exist.

Predicate: unregister/1 actor

unregister(+Name) is det.

Remove the association between the name and the process.

Predicate: exit/1 actor

exit(+Reason) is det.

Exit the calling process with Reason.

Predicate: exit/2 actor
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exit(+Pid, +Reason) is det.

Exit the process identified as Pid with Reason.

Predicate: !/2, send/2-3 actor

+PidOrName ! +Message is det.
send(+PidOrName, +Message) is det.
send(+PidOrName, +Message, +Options) is det.

Sends Message to the mailbox of the process identified as PidOrName. PidOrName
must have the formPid@Node orName@Node.Pid@localhost andName@localhost
refer to actors running on the current node, and can often be abbreviated to Pid or
Name, respectively. Valid options for send/3 are:

• delay(+IntegerOrFloat)
Delays the sending with a specified number of seconds. Default is 0.

• id(+ID)
ID is a user supplied identifier that can be used by cancel/1 to stop the sending
of the message to happen.

Predicate: cancel/1 actor

cancel(+ID) is det.

Tries to cancel the sending of all delayedmessages with the specified ID. This cannot
be guaranteed to succeed since a message may already have been sent by the time
the call is made.

Predicate: raise/1 actor

raise(+Message) is det.

Sends Message to the mailbox of the current process. Bootstrapped as

raise(Message) :-
self(Pid),
Pid ! Message.

Predicate: output/1-2 actor

output(+Data) is det.
output(+Data, +Options) is det.

Sends a message output(Pid,Data) to the target process. Pid is the pid of the
current process. Valid option:

• target(+Pid)
Send the message to Pid. Default is the parent process.
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Note that this is just a convenience predicate. A toplevel, just like any other actor,
may use !/2 to send any term to any process to which it has a pid.

Predicate: input/2 actor

input(+Prompt, -Data) is det.
input(+Prompt, -Data, +Options) is det.

Sends a message prompt(Pid,Prompt) to the target process and waits for its
input. Prompt may be any term (i.e. even a compound term). Pid is the pid of the
current process. Data will be bound to the term that the target process sends using
respond/2. Valid option:

• target(+Pid)
Send the prompt message to Pid. Default is the parent process.

Predicate: respond/2 actor

respond(+Pid, +Input) is det.

Sends a response in the form of the term Input to a process that has prompted its
parent process for input.

Predicate: receive/1-2 actor

receive(+Clauses) is semidet.
receive(+Clauses, :Options) is semidet.

Clauses is a sequence of receive clauses delimited by a semicolon:

{ Pattern1 [if Guard1] ->
Body1 ;

...
PatternN [if GuardN] ->

BodyN
}

Each pattern in turn is matched against the first message (the one that has been
waiting longest) in the mailbox. If a pattern matches and the corresponding guard
succeeds, the matching message is removed from the mailbox and the body of the
receive clause is called. If the first message is not accepted, the second one will be
tried, then the third, and so on. If none of the messages in the mailbox is accepted,
the process will wait for new messages, checking them one at a time in the order
they arrive. Messages in the mailbox that are not accepted are deferred, i.e. left in
the mailbox without any change in their contents or order. Valid options:

• timeout(+IntegerOrFloat)
If nothing appears in the current mailbox within IntegerOrFloat seconds, the
predicate succeeds anyway. Default is no timeout.

• on_timeout(+Goal)
If the timeout occurs, Goal is called.
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A.2 Predicates for programming with toplevel actors

Predicate: toplevel_spawn/1-2 actor

toplevel_spawn(-Pid) is det
toplevel_spawn(-Pid, +Options) is det

Spawns a toplevel and binds Pid to its pid. With just two exceptions, all options that
can be passed to toplevel_spawn/2 are inherited from spawn/3. The only new
options are session and target.

• session(+Boolean)
If set to false, the toplevel actor will terminate after having run a goal to
completion. If true, further interaction is expected. Defaults to false.

• target(+Pid)
Send all answer terms to Pid. Default is the pid of the parent.

Predicate: toplevel_call/2-3 actor

toplevel_call(+Pid, +Goal) is det.
toplevel_call(+Pid, +Goal, +Options) is det

Asks the toplevel Pid for solutions to Goal. Valid options are:

• template(+Template)
Template is a term sharing variables with the goal. By default, the template is
identical to the goal.

• offset(+Integer)
Collect only the slice of solutions starting from Integer. Default is 0.

• limit(+Integer)
By default, toplevel_call/2-3 requests that all solutions to Goal be computed
and returned as a list of solutions embedded in an answer term of type success.
By passing the limit option, the length of this list can be restricted to Integer.

• target(+Pid)
Send the answer term to Pid. Default is the value of target when passed as an
option to toplevel_spawn/2.

Variables in Goalwill not be bound. Instead, solutions and other kinds of output will
be returned in the form of answer messages delivered to the mailbox of the process
that called toplevel_spawn/2-3.

• success(Pid, Data, More)
Pid refers to the toplevel process that succeeded in solving the goal. Data is a
list holding instantiations of Template. More is either true or false, indicating
whether or not we can expect the toplevel to be able to return more solutions,
would we call toplevel_next/1-2.

• failure(Pid)
Pid is the pid of the toplevel process that failed for lack of (more) solutions.
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• error(Pid, Data)
Pid is the pid of the toplevel throwing the error. Data is the error term.

Note that nothing stops a toplevel from sending messages of a form different from
the above to the target.

Predicate: toplevel_next/1-2 actor

toplevel_next(+Pid) is det.
toplevel_next(+Pid, +Options) is det

Asks toplevel Pid for more solutions to Goal. Valid options:

• limit(+Integer)
By default, the value of the limit option is the same as for toplevel_call/2-3.

• target(+Pid)
Send the answer term to Pid. Default is the value of target when passed as an
option to toplevel_call/3.

Themessages delivered to themailbox of the target are the same as fortoplevel_call/2-3.

Predicate: toplevel_stop/1 actor

toplevel_stop(+Pid) is det.

Asks toplevel Pid to stop searching for more solutions.

Predicate: toplevel_abort/1 actor

toplevel_abort(+Pid) is det.

Tells toplevel Pid to abort the execution of any goal it currently runs.

Predicate: toplevel_exit/1-2 actor

toplevel_exit(+Reason) is det.
toplevel_exit(+Pid, +Reason) is det.

Same as exit/1 and exit/2.

A.3 Built-in Predicates for RPC

Predicate: rpc/2-3 isobase

rpc(+URI, +Goal) is nondet.
rpc(+URI, +Goal, +Options) is nondet.
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Semantically equivalent to the sequence below, except that the goal is executed in
(and in the Prolog context of) the node referred to by URI, rather than locally.

copy_term(Goal, Copy),
call(Copy), % executed on node at URI
Goal = Copy.

The following options are valid:

• limit(+Integer) isobase
By default, rpc/2-3 will only make one trip to the remote node at URI in which
it will (try to) compute all solutions to Goal in order to cache them at the client.
A goal with n solutions and limit set to 1 would require n roundtrips if we
wanted to see them all. With limit set to i, the same goal would only require
ceiling(n/i) roundtrips.

• timeout(+IntegerOrFloat) isobase
Terminates the spawned process (or the process of spawning a process) after
IntegerOrFloat seconds.

• load_text(+AtomOrString) isotope
Loads the clauses specified by aWeb Prolog source text into the underlying actor’s
private Prolog database before calling Goal.

• load_list(+ListOfClauses) isotope
Loads a list of Web Prolog clauses into the underlying actor’s private Prolog
database before calling Goal.

• load_uri(+URI) isotope
Loads the clauses specified by the Web Prolog source text at URI into the under-
lying actor’s private Prolog database before calling Goal.

• load_predicates(+ListOfPredicateIndicators) isotope
Loads the local predicates denoted by ListOfPredicateIndicators into the
underlying actor’s private Prolog database before calling Goal.

• monitor(+Boolean) actor
Default is false, i.e. to not monitor. The node at URI must be another actor
node.

• protocol(+Atom) actor
If Atom is http (default), the HTTP protocol will be used as transport, and if
Atom is ws, a WebSocket connection will be used.

• pid(-Pid) actor
The pid option is passed with a free variable Pid which will be bound to the
pid of the remote toplevel when the call returns. Using the pid option breaks the
abstraction for remote procedure calling, so it should be used with care. Note that
if transport is http, Pid will be bound to anonymous. The node at URI must
be another actor node.

Predicate: promise/3-4 isobase

promise(+URI, +Goal, -Ref) is det.
promise(+URI, +Goal, -Ref, +Options) is det.
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Makes an asynchronous RPC call to node URI with Goal. This is a type of RPC
which does not suspend the caller until the result is computed. Instead, a reference
Ref is returned, which can later be used by yield/2-3 to collect the answer. The
reference can be viewed as a promise to deliver the answer. Valid options are:

• template(+Template)
Template is a term sharing variables with the goal. By default, the template is
identical to the goal.

• offset(+Integer)
Collect only the slice of solutions starting from Integer. Default is 0.

• limit(+Integer)
By default, promise/3-4 requests that all solutions to Goal be computed and
returned as a list of solutions embedded in an answer term of type success. By
passing the limit option, the length of this list can be restricted to Integer.

Predicate: yield/2-3 isobase

yield(+Ref, ?Answer) is det.
yield(+Ref, ?Answer, +Options) is det.

Returns the promised answer from a previous call to promise/3-4. If the answer
is available, it is returned immediately. Otherwise, the calling process is suspended
until the answer arrives from the node that was called. Note that this predicate must
be called by the same process from which the previous call to promise/3-4 was
made, otherwise it will not return. Valid options:

• timeout(+IntegerOrFloat)
If nothing appears in the current mailbox within IntegerOrFloat seconds, the
predicate succeeds anyway. Default is no timeout.

• on_timeout(+Goal)
If the timeout occurs, Goal is called.

A.4 The stateless HTTP API

In our proposal for an HTTP query API, the URI in a GET request for one or more
solutions to a query has the following form:

BaseURI/call?goal=G&template=T&offset=O&limit=L&format=F

The URI denotes a resource in the form of a (possibly only partial) answer to the
goal G as given by the node BaseURI. The template T works as in findall/3 and
the semantics of the offset and limit parameters are borrowed from SQL and
SPARQL, As in these languages they expect integer values, where offset defaults
to 0 and limit to infinite. A client may also use a parameter load_text in order
to send along source code to complement the goal. Responses are returned as Prolog
terms or as Prolog variable bindings encoded in JSON.
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A response contains a success answer, a failure answer, or an error answer. A
success answer contains a list of solutions of the form T to G, starting at offset O and
having a length of at most L. In addition, an indication whether more solutions may
exist is given. By default, answers are rendered as JSON, where the slice of solutions
is represented as a list of pairs of the form {<var>:<value>,..,<var>:<value>}.
A failure answer indicates that no (more) solutions exists, and an error answer signals
an error and carries an error message.

[TODO: Needs more work!]

A.5 The stateful WebSocket API

[TODO: Needs work!]





Appendix B
How to implement a Prolog node

Vision without execution is just hallucination.

Thomas Alva Edison

Wewould have loved to be able to present a stable, speedy and secure implementation
of a Prolog node, ready to be deployed to help building the Prolog Web. However,
there exists no such implementation at this point in time. There are some proof-of-
concept implementations, but they are neither stable nor speedy, nor secure. How
can we build one that is? And how can we build more than one, so that we can make
sure that interoperability across different implementations works as intended?

B.1 Wrapping a node around an existing Prolog system

Make it work, then make it beautiful, then if you really, really have to, make it fast. 90% of
the time, if you make it beautiful, it will already be fast. So really, just make it beautiful!

Joe Armstrong

It is likely that the first implementations of Prolog nodes would be Prolog systems
providing as libraries whatever is required to comply withWeb Prolog requirements.
This is how our proof-of-concept implementations were built.

Some really excellent Prolog systems exist out there, so if you are a Prolog
implementor, one obvious advantage with this approach is that most of the necessary
work has already been done. The amount of additional work required to implement
a node depends on which system it is built on top of.
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In this section, we look at different ways to wrap a node around a system that
supports the ISO Prolog working draft for threads.1 We are aiming for an almost
complete ISOBASE node, as well as an ACTOR node, albeit less complete.

Using SWI-Prolog, we show a way to implement the stateless HTTP API. We
do not focus solely on semantics, but on performance too. In particular, we devise
a way to optimize the API by avoiding the spurious recomputation of solutions that
a naive implementation would have to do. Furthermore, we implement a version of
rpc/2-3 on top of the stateless HTTP API.

We also implement specifications for howwebelieve predicates such asspawn/2-3,
!/2 and receive/1-2 should work. On top of actors, we implement the behavior
of Prolog toplevels. These implementations focus on semantics rather than perfor-
mance.

We are seeking, if not beauty, then at least as much clarity and simplicity as
possible. Our implementations are only partial, but we also indicate what else would
be needed to complete them.

B.1.1 Implementing an ISOBASE node

A Prolog ISOBASE node is equipped with a stateless HTTP API. Managing this
API is actually the only task its node controller is resonsible for. It means that we
can make good use of a library for building web servers. Here is how a web server
may be written in SWI-Prolog using library(http/http_server):

:- use_module(library(http/http_server)).

:- http_handler(root(call), node_controller_isobase, []).

node_controller_isobase(Request) :-
http_parameters(Request, [

goal(GoalAtom, [atom]),
template(TemplateAtom, [default(GoalAtom)]),
offset(Offset, [integer, default(0)]),
limit(Limit, [integer, default(10 000 000 000)]),
format(Format, [atom, default(json)])

]),
atomic_list_concat([GoalAtom,+,TemplateAtom], QTAtom),
read_term_from_atom(QTAtom, Goal+Template, []),
compute_answer(Goal, Template, Offset, Limit, Answer),
respond_with_answer(Format, Answer).

node(Port) :-
http_server(http_dispatch, [port(Port)]).

1 http://logtalk.org/plstd/threads.pdf
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The call to compute_answer/5 is responsible for the real work here. It takes a goal,
a template, an offset and a limit, and computes an answer term serving as a response
to the request which can be sent back to the client formatted as Prolog or JSON.
There is more than one way to implement this predicate. Let us first look at a simple
(but from a performance point of view naive) way of doing it.

SWI-Prolog offers a library predicate findnsols/4which provides a useful foun-
dation for our implementation. It is somewhat similar to the standard findall/3,
but expects an integer Limit in its first argument and will generate at most that
many solutions. It is also non-deterministic, so on backtracking it will do it again.
We borrow an example of its use from the SWI-Prolog manual:2

?- findnsols(5, I, between(1, 12, I), L).
L = [1, 2, 3, 4, 5] ;
L = [6, 7, 8, 9, 10] ;
L = [11, 12].
?-

Another SWI-Prolog library predicate offset/2will also prove useful.3 Its purpose
is to skip the first n solutions to a goal, i.e. the first n solutions are computed, but not
collected. Here is an example of its use:

?- offset(10, between(1, 12, I)).
I = 11 ;
I = 12.
?-

Combining findnsols/4 with offset/2 allows us to implement a predicate
slice/5 capable of computing a slice of solutions to a goal:

slice(Goal, Template, Offset, Limit, Slice) :-
findnsols(Limit, Template, offset(Offset, Goal), Slice).

However, we are looking for answers, rather than just slices of solutions. Bywrapping
a call to slice/5 in a call to call_cleanup/2 wrapped by a call to catch/3 we
arrive at a predicate answer/5 capable of producing the four different forms of
answer terms that we need:

answer(Goal, Template, Offset, Limit, Answer) :-
catch(
call_cleanup(slice(Goal, Template, Offset, Limit, Slice),

Det = true),
Error, true),

( Slice == []
-> Answer = failure
; nonvar(Error)

2 https://www.swi-prolog.org/pldoc/doc_for?object=findnsols/4
3 https://www.swi-prolog.org/pldoc/doc_for?object=offset/2
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-> Answer = error(Error)
; var(Det)
-> Answer = success(Slice, true)
; Det = true
-> Answer = success(Slice, false)
).

This predicate will turn out to be useful in more than one way. In this context it
will be used for the implementation of compute_answer/5. In this role we want
compute_answer/5 to be deterministic, so since the call to answer/5 is non-
deterministic we need to wrap it in a call to once/1 like so:

compute_answer(Goal, Template, Offset, Limit, Answer) :-
once(answer(Goal, Template, Offset, Limit, Answer)).

The implementation of our simple but naive stateless HTTP API is almost complete,
and assumingwe also have a suitable implementation of respond_with_answer/2,
we can now start running a node:

?- node(3010).
% Started server at http://localhost:3010/
true.
?-

At this point we may want to take the node’s stateless HTTP API for a trial run by
entering the following URI in a web browser:

http://localhost:3010/call?goal=member(X,[a,b])&format=prolog

In the browser’s window, we should then see the following:

success([member(a,[a,b]),member(b,[a,b])],false)

By appending &template=X&offset=0&limit=1 to the URI we should get

success([a],true)

and by incrementing the offset parameter by 1 we should see

success([b],false)

Note that it is important that we do not expose the node to the whole world at this
point, as it is not secure.
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B.1.2 Implementing rpc/2-3 on top of the stateless HTTP API

As soon as we have an implementation of the stateless HTTP API, we can easily, by
means of two other libraries provided by SWI-Prolog,4 implement rpc/2-3 on top
of it. Here is the source code:

:- use_module(library(http/http_open)).
:- use_module(library(url)).

rpc(URI, Goal) :-
rpc(URI, Goal, []).

rpc(URI, Goal, Options) :-
parse_url(URI, Ps),
term_variables(Goal, Vars),
Template =.. [v|Vars],
format(atom(GA), "(~p)", [Goal]),
format(atom(TA), "(~p)", [Template]),
option(limit(L), Options, 10 000 000 000),
rpc_7(Template, 0, L, GA, TA, Ps, Options).

rpc_7(Template, O, L, GA, TA, Ps, Os) :-
parse_url(ExpandedURI, [

path(’/call’),
search([goal=GA, template=TA, offset=O,

limit=L, format=prolog])
| Ps

]),
setup_call_cleanup(

http_open(ExpandedURI, Stream, Os),
read(Stream, Answer),
close(Stream)),

rpc_8(Answer, Template, O, L, GA, TA, Ps, Os).

rpc_8(success(Slice, true), Template, O, L, GA, TA, Ps, Os) :- !,
( member(Template, Slice)
; NewO is O + L,

rpc_7(Template, NewO, L, GA, TA, Ps, Os)
).

rpc_8(success(Slice, false), Template, _, _, _, _, _, _) :-
member(Template, Slice).

rpc_8(failure, _, _, _, _, _, _, _) :- fail.
rpc_8(error(E), _, _, _, _, _, _, _) :- throw(E).

4 See https://www.swi-prolog.org/pldoc/man?section=httpopen and
https://www.swi-prolog.org/pldoc/man?section=url
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The idea behind this code is to use http_open/3 in a loop in order to make one
or more requests for consecutive slices of solutions to the goal in the first argument
using the stateless HTTP API. The URI of each request takes the form

BaseURI/call?goal=G&template=T&offset=O&limit=L&format=prolog

where O is initially 0 and is incremented by L between requests.
The most interesting parts of the implementation are the use of the disjunction in

the body of the first rpc/7 clause and the use of member/2 in the first and second
clauses. They are responsible for turning the responses to the deterministic requests
made by http_open/3 into the non-deterministic behavior we want rpc/2-3 to
show.

Let us test our implementation by running an example from Chapter 3, showing
how rpc/2-3 can be used:

?- [user].
|: human(plato).
|: human(aristotle).
|: ^D% user://1 compiled 0.00 sec, 2 clauses
true.
?- rpc(’http://localhost:3010’, human(Who)).
Who = plato ;
Who = aristotle.
?-

Note that although the query has two solutions, only one network roundtrip is made,
triggered by the following HTTP request:

GET http://localhost:3010/call?goal=human(Who)&format=prolog

The response contains the following answer term:

success([human(plato),human(aristotle)],false)

The above code is just a sketch that leaves out some of the details that are necessary for
a fullyworking node. In particular, it does not implement respond_with_answer/2
and it does not handle syntax errors in queries. None of this would be difficult to
add, and with such additions, this section together with the previous one implements
the stateless API of an ISOBASE node, as well as the rpc/2-3 predicate.

B.1.3 Fixing a problem due to spurious recomputation

The above implementation of the HTTP API suffers from a performance problem.
The problem is easy to spot when timing a goal simulating a situation where a first
solutions takes a long time to compute while a second solution takes almost no time
at all – a goal such as the disjunction (sleep(1), X=foo ; X=bar) for example.
Here is how this looks in a system such as SWI-Prolog:
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?- time((sleep(1), X=foo ; X=bar)).
% 1 inferences, 0.000 CPU in 1.005 seconds
X = foo ;
% 7 inferences, 0.000 CPU in 0.000 seconds
X = bar.
?-

As expected, solving the first disjunct took one second, while the second disjunct
took almost no time at all. However, when calling this goal using rpc/3 with the
limit options set to 1, we see the following:

?- _URI = ’http://localhost:3010’,
time(rpc(_URI, (sleep(1), X=foo ; X=bar), [limit(1)])).

% 1,984 inferences, 0.001 CPU in 1.006 seconds
X = foo ;
% 1,804 inferences, 0.001 CPU in 1.009 seconds
X = bar.
?-

The cause of this problem lies not in the implementation of rpc/2-3, but in the
HTTP API, and more precisely in the way compute_answer/5works. Consider the
following call, where the third argument (for the offset) is 1:

?- _Goal = (sleep(1), X=foo ; X=bar),
time(compute_answer(_Goal, X, 1, 1, Answer)).

% 30 inferences, 0.000 CPU in 1.005 seconds
Answer = success([bar], false).
?-

In general, computing the first slice (i.e. the one starting at offset 0) is as fast as it can
be, but computing the second slice involves the recomputation of the first slice and,
more generally, computing the nth slice involves the recomputation of all preceding
slices, the results of which are then just thrown away. This, of course, is a waste of
resources and puts an unnecessary burden on the node.

This is not as bad as it looks. Most uses of rpc/2-3 will compute all solutions at
once and thus make only one network roundtrip.

?- time(rpc($_URI, (sleep(1), X=foo ; X=bar))).
% 2,011 inferences, 0.001 CPU in 1.007 seconds
X = foo ;
% 5 inferences, 0.000 CPU in 0.000 seconds
X = bar.
?-

It is only when the limit option must be employed, so that more than one network
roundtrip has to be made, that the problem surfaces.
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?- _Goal = (sleep(1), X=foo ; X=bar),
time(compute_answer(_Goal, X, 0, 2, Answer)).

% 29 inferences, 0.000 CPU in 1.002 seconds
Answer = success([foo, bar], false).
?-

Still, to achieve a less wasteful and more efficient stateless querying even when more
than one network roundtrip must be made, recomputation of the kind described in the
previous section should be avoided. In this section we lay out an approach where the
node controller (subject to a setting) may cache the state of the toplevel process that
produced the nth slice of solutions to a query, so that the work spent on producing
it will not have to be repeated. This can still be done without requiring that the
node controller remembers which client made the request for the previous slices of
solutions.

The method can be seen as a kind of pooling of toplevel processes, but while
pooling usually involves a pool of merely initialized but idle processes which stand
ready to be given work, this method involves a pool where each member has already
done some real work. In other words, the idea here is not to cache already computed
solutions but rather to cache the potential for new solutions in the form of processes
that are idle, but have “more to give” if put to work.5

A consequence of this approach is that it allows the computation of the full set
of solutions to a query to be distributed over more than one toplevel process. We
can avoid spawning a new process for each incoming request, but instead, when
available, select a member from a pool of suspended processes which, since it has
already performed some of the work, needs to do as little as possible in order to
compute the requested solutions. Using this approach, it is likely (although not
guaranteed) that the work that generated the nth slice of solutions does not have to
be repeated if a request for the next slice is made.

One way to realize this is to make the node controller responsible for the mainte-
nance of a cache consisting of entries pointing to members of the pool of suspended
processes. Such a cache has a very straightforward implementation in Prolog thanks
to its dynamic database. The signature of a cache entry can be given as follows:

cache(+Gid, +N, -Pid) is nondet.

Here, Gid is an identifier representing a goal G and a template T. N is an integer > 0,
and Pid is the pid of an already spawned process which, after having computed N
solutions to G and returned them to the client, is now suspended but can be activated
again at any point. A cache is simply a dynamic predicate comprising an ordered
sequence of cache/3 clauses. The cache will be searched from the top, stopping
when the first match is found. Updates will be added to the bottom.6

The cache forms a queue-like data structure and can be seen as a kind of priority
queue. When a request comes in which specifies a goal, a template, and an offset > 1,

5 Credits for this idea goes to Jan Wielemaker. The implementation is our’s.
6 Note that the implementation of the cache as a Prolog predicate is not mandated. A node would
be free to implement it in a way that suits the host platform best.
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the cache is scanned from the beginning of the queue, the first matching entry is
dequeued, and the corresponding process is employed. If no matching entry is found,
a new process is spawned. Newly created as well as updated cache entries are added
to the end of the queue.

The maximum size of the cache for a particular node can be specified by its owner
by means of a setting. What is a reasonable size depends on the host platform of the
node, and in particular on the cost of keeping suspended toplevel actors around.

Here is an implementation of two predicates for managing the cache:

:- dynamic cache/3.

cache_retract(Gid, N, Pid) :-
once(retract(cache(Gid, N, Pid))).

cache_update(Gid, N, Pid) :-
assertz(cache(Gid, N, Pid)),
setting(cache_size, Size),
predicate_property(cache(_,_,_),

number_of_clauses(N)),
N > Size -> cache_retract(_,_,_) ; true.

To ensure efficient cache lookup, the goal identifier Gid is a hash value computed
from a grounded copy of the goal. In SWI-Prolog, goal_id/2may be implemented
as follows:

goal_id(GoalTemplate, Gid) :-
copy_term(GoalTemplate, Gid0),
numbervars(Gid0, 0, _),
term_hash(Gid0, Gid).

Equippedwith the above utility predicates, compute_answer/5 can be implemented
like so:

compute_answer(Goal, Template, Offset, Limit, Answer) :-
goal_id(Goal-Template, Gid),
( cache_retract(Gid, Offset, Pid)
-> thread_self(Self),

toplevel_next(Pid, [
limit(Limit),
target(Self)

])
; toplevel_spawn(Pid, [session(false)]),

toplevel_call(Pid, Goal, [
template(Template),
offset(Offset),
limit(Limit)

])
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),
setting(timeout, Timeout),
receive({

success(Pid, Slice, true) ->
Index is Offset + Limit,
cache_update(Gid, Index, Pid),
Answer = success(Slice, true);

success(Pid, Slice, false) ->
Answer = success(Slice, false);

failure(Pid) ->
Answer = failure;

error(Pid, Error) ->
Answer = error(Error)

},[
timeout(Timeout),
on_timeout((Answer = error(timeout),

toplevel_exit(Pid, kill)))
]).

Given a goal and a template, a goal identifier Gid is computed. Since more than one
client may request the same slice of solutions, the Gid is not unique. Based on the gid
and the value of the offset parameter, an attempt to look up a cache entry pointing
to a suitable toplevel process will be made. If this succeeds, toplevel_next/2
will be called, which will compute an answer holding a slice of solutions no longer
than the value of the limit parameter specifies. If it fails, a new toplevel will be
spawned using toplevel_spawn/3, and toplevel_call/3 will be called, which
will compute the answer instead.

The answer term resulting from this is sent to the thread in which the request
handler is running and can be caught by receive/2. Note that if the reception of
the term takes too long, it will result in a timeout error.

?- _Goal = (sleep(1), X=foo ; X=bar),
time(compute_answer(_Goal, X, 0, 1, Answer)).

% 30 inferences, 0.000 CPU in 1.005 seconds
Answer = success([foo], true).
?-

...

?- _Goal = (sleep(1), X=foo ; X=bar),
time(compute_answer(_Goal, X, 1, 1, Answer)).

% 30 inferences, 0.000 CPU in 0.005 seconds
Answer = success([bar], false).
?-

How can we extend the implementation of the ISOBASE node so that it can serve
also as an ISOTOPE node? As evident from the diagram in Figure ??, it needs
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support for the load_text parameter. Its value must be sent along when call-
ing toplevel_spawn/2, which will inject the code in the private database of the
toplevel. Moreover, the goal identifier must be based on both the goal, the template
and this value. Code for handling all of this would be easy to add.

B.1.4 Implementing the Erlang-style concurrency predicates

This section implement specifications for how we believe predicates such as
spawn/2-3, exit/1-2, !/2 and receive/1-2 might work. To keep things as
succinct as possible we do not add code checking the instantiation of arguments.
(However, some such tests are present in the proof-of-concept mini implementation.)

Today widely available Prolog systems can be differentiated whether they are
multi-threaded or not. In a multi-threaded Prolog system we can create multiple
threads that run concurrently over the same knowledge base. From Table 2 in Fifty
Years of Prolog and Beyond we learn that out of the Prolog systems listed above, five
implementmulti-threading support.According to this table, these areCiao, ECLiPSe,
SWI-Prolog, tuProlog and XSB. However, we have found that Trealla Prolog should
also be added to the list, and thus we have six systems with multi-threading support.

There is a draft standard for multi-threading support in Prolog, specified in a
document that begins like so:

ISO/IEC DTR 13211–5:2007 Prolog multi-threading support [...] is an optional part of the
International Standard for Prolog, ISO/IEC 13211. [...] Multi-thread predicates are based on
the semantics of POSIX threads. They have been implemented in some Prolog systems. As
such, they are deemed a worthy extension to the ISO/IEC 13211 Prolog standard.7

Except for Ciao Prolog, which takes a different approach to multi-threading, the six
systems listed above all implement the draft standard.

In order to support the Erlang-style concurrency predicates offered by the ACTOR
profile of Web Prolog the five predicates on the left can be implemented by means
of the seven predicates from the draft standard on the right:

spawn/3 thread_create/3
self/1 thread_self/1
!/2, send/2 thread_send_message/2
receive/1-2 thread_get_message/3
exit/2 thread_signal/2

thread_detach/1
thread_property/2

The drafts standard specifies more than a dozen more predicates, such as predicates
for creating message queues and managing mutexes. We do not need those.

Here is a first sketch of an implementation of spawn/2-3:

7 https://logtalk.org/plstd/threads.pdf
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:- op(800, xfx, !).
:- op(1000, xfy, when).

:- dynamic link/2.

spawn(Goal) :-
spawn(Goal, _Pid).

spawn(Goal, Pid) :-
spawn(Goal, Pid, []).

spawn(Goal, Pid, Options) :-
thread_self(Self),
make_pid(Pid),
thread_create(start(Self, Pid, Goal, Options), Pid, [

alias(Pid),
at_exit(stop(Pid, Self))

]),
thread_get_message(initialized(Pid)).

make_pid(Pid) :-
random_between(10000000, 99999990, Num),
atom_number(Pid, Num).

:- thread_local parent/1.

start(Parent, Pid, Goal, Options) :-
assertz(parent(Parent)),
option(link(Link), Options, true),
( Link == true
-> assertz(link(Parent, Pid))
; true
),
option(monitor(Monitor), Options, false),
( Monitor == true
-> assertz(monitor(Parent, Pid))
; true
),
thread_send_message(Parent, initialized(Pid)),
call(Goal).

stop(Pid, Parent) :-
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thread_detach(Pid),
retractall(link(Parent, Pid)),
retractall(registered(_Name, Pid)),
forall(retract(link(Pid, ChildPid)),

exit(ChildPid, linked)),
down_reason(Pid, Reason),
forall(retract(monitor(Other, Pid)),

Other ! down(Pid, Reason)).

down_reason(Pid, Reason) :-
retract(exit_reason(Pid, Reason)),
!.

down_reason(Pid, Reason) :-
thread_property(Pid, status(Reason)).

A thread implements an actor. The thread comes with its own message queue, which
will serve as the actor’s mailbox. The thread identifier works like a pid.

A number of thread-related predicates are called that finds the identity of the
soon-to-become parent, creates a thread that, just before terminating, calls down/3,
which takes care of what must be done in the last moment before the actor terminates
– the termination of any children that it may have spawned during its life cycle (in
case link is set to true), and the sending of a down message to the parent (if
monitor is set to true).

The above implementation of spawn/2-3 calls two predicates – exit/2 and !/2
– that must be implemented. In addition, exit/1must be implemented, and this can
be done as folloows:

:- dynamic exit_reason/2.

exit(Reason) :-
self(Self),
asserta(exit_reason(Self, Reason)),
abort.

For the implementation of exit/2, ISO/IEC DTR 13211–5:2007 specifies a predi-
cate thread_signal/2 to make a thread execute some goal as an interrupt. Signal-
ing may be used to cancel no-longer-needed threads. This means that exit/2 may
be implemented like so:

exit(Pid, Reason) :-
catch(thread_signal(Pid,

exit(Reason)),
error(existence_error(_,_), _),
true).

Note that thread_signal/2 throws an error if the thread ID in the first argument
points to a thread that does not exist. Since exit/2 must succeed also in this case,
we have wrapped the call to thread_signal/2 in a call to catch/3.
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For the implementation of !/2, ISO/IEC DTR 13211–5:2007 offers a predi-
cate thread_send_message/2 which is somewhat similar to Erlang’s send prim-
itive. It allows any term to be sent to any thread. Just like in Erlang, the term
is copied to the receiving process and variable bindings are thus lost. However,
thread_send_message/2 throws an error if the thread ID in the first argument
points to a thread that does not exist. Again, since !/2, just like in Erlang, should
succeed also in this case, we wrap the call in catch/3 like so:

Pid ! Message :-
send(Pid, Message).

send(Name, Message) :-
registered(Name, Pid),
!,
send(Pid, Message).

send(Pid, Message) :-
catch(thread_send_message(Pid, Message),

error(existence_error(_,_), _),
true).

In effect, this makes any attempt to send a message to a non-existing actor a no-op.
The predicates output/1-2, input/2-3 and respond/2 are implemented on

top of the !/2 primitive. Their purpose is to simulate I/O.
Here is the suggested implementation of output/1-2:

output(Term) :-
output(Term, []).

output(Term, Options) :-
self(Self),
parent(Parent),
option(target(Target), Options, Parent),
Target ! output(Self, Term).

The implementation of input/2-3 is slightly more complicated:

input(Prompt, Input) :-
input(Prompt, Input, []).

input(Prompt, Input, Options) :-
self(Self),
parent(Parent),
option(target(Target), Options, Parent),
Target ! prompt(Self, Prompt),
receive({
’$input’(Target, Input) ->

true
}).
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The predicate respond/2 is used to respond to a prompt:

respond(Pid, Term) :-
self(Self),
Pid ! ’$input’(Self, Term).

The implementation of the receive operation is somewhat more involved. Relying on
thread_get_message/3, what might be regarded as a reference implementation
of receive/1-2 looks like this:

:- thread_local deferred/1.

receive(Clauses) :-
receive(Clauses, []).

receive(Clauses, Options) :-
thread_self(Mailbox),
( clause(deferred(Msg), true, Ref),

select_body(Clauses, Msg, Body)
-> erase(Ref),

call(Body)
; receive(Mailbox, Clauses, Options)
).

receive(Mailbox, Clauses, Options) :-
( thread_get_message(Mailbox, Msg, Options)
-> ( select_body(Clauses, Msg, Body)

-> call(Body)
; assertz(deferred(Msg)),

receive(Mailbox, Clauses, Options)
)

; option(on_timeout(Body), Options, true),
call(Body)

).

select_body(_M:{Clauses}, Message, Body) :-
select_body_aux(Clauses, Message, Body).

select_body_aux((Clause ; Clauses), Message, Body) :-
( select_body_aux(Clause, Message, Body)
; select_body_aux(Clauses, Message, Body)
).

select_body_aux((Head -> Body), Message, Body) :-
( subsumes_term(if(Pattern, Guard), Head)
-> if(Pattern, Guard) = Head,

subsumes_term(Pattern, Message),
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Pattern = Message,
catch(once(Guard), _, fail)

; subsumes_term(Head, Message),
Head = Message

).

B.1.5 Implementing the first-class Prolog toplevel

In addition to the Erlang-style actors, the toplevel behavior, controlled by predicates
such as toplevel_spawn/1-2 and friends, must also be implemented. We refer the
reader back to Chapter 2 for how this should work and for some hints for how it can be
implemented. In our experience, once we have a complete implementation of all the
Erlang-style primitives for concurrency and distribution, the implementation of the
toplevel behavior and the built-in predicates for controlling it is fairly straightforward.

We begin with an implementation of toplevel_spawn/1-2:

toplevel_spawn(Pid) :-
toplevel_spawn(Pid, []).

toplevel_spawn(Pid, Options) :-
self(Self),
option(session(Session), Options, false),
option(target(Target), Options, Self),
spawn(state_1(Pid, Target, Exit), Pid, Options).

Note that options passed to toplevel_spawn/2 will be passed on to spawn/3 as
well.

The most important part of the implementation of the PTCP protocol are the three
states s1, s2 and s3 , depicted in the diagram in Figure B.1:

Fig. B.1 The three inner states of the PTCP protocol.

state_1(Pid, Target0, Session) :-



B.1 Wrapping a node around an existing Prolog system 105

receive({
’$call’(Goal, Options) ->

option(template(Template), Options, Goal),
option(offset(Offset), Options, 0),
option(limit(Limit0), Options, 10 000 000 000),
option(target(Target1), Options, Target0),
Limit = count(Limit0),
state_2(Goal, Template, Offset, Limit, Pid, Answer),
Target = target(Target1),
arg(1, Target, Out),
Out ! Answer,
( arg(3, Answer, true)
-> state_3(Limit, Target)
; true
)

}),
( Session == false
-> true
; state_1(Pid, Target0, Session)
).

In state_2 the real work is being done. The predicate answer/5, defined earlier
in this chapter in the context of the stateless web API, is reused. However, answer
terms must be extended with the pids of the actor processes that produced them.

state_2(Goal, Template, Offset, Limit, Pid, Answer) :-
answer(Goal, Template, Offset, Limit, Answer0),
add_pid(Answer0, Pid, Answer).

To handle this, add_pid/3 is defined like so:

add_pid(success(Slice, More), Pid, success(Pid, Slice, More)).
add_pid(failure, Pid, failure(Pid)).
add_pid(error(Term), Pid, error(Pid, Term)).

One feature of answer/5 that was not demonstrated before, is that the argument
specifying the limit can be passed a unary term count with an integer in its argu-
ment. This works like a mutable local variable that can be assigned values using
nb_setarg/3 and read by means of arg/3.

?- Limit = count(2),
answer(between(1,12,I), I, 0, Limit, Answer),
nb_setarg(1, Limit, 5).

Limit = count(5),
Answer = success([1, 2], true) ;
Limit = count(5),
Answer = success([3, 4, 5, 6, 7], true) ;
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Limit = count(5),
Answer = success([8, 9, 10, 11, 12], false).
?-

In the definition of the predicate state_1/3 we saw that if a success answer
term indicates (with true in its third argument) that there may be more solutions
to the current goal, we enter state_3. For other answer terms a recursive call of
state_1/3 is made.

state_3(Limit, Target) :-
receive({

’$next’(Options2) ->
( option(limit(NewLimit), Options2)
-> nb_setarg(1, Limit, NewLimit)
; true
),
( option(target(NewTarget), Options2)
-> nb_setarg(1, Target, NewTarget)
; true
),
fail ;

’$stop’ -> true
}).

Here it is the reception of the ’$next’ message and the subsequent call to fail/0
that triggers the backtracking to answer/5 in state s2. If the ’$stop’ message is
received instead, state_3/2 terminates, and then state_1/3 terminates too (unless
the option session(true) was passed to toplevel_spawn/1-2).

As can be seen in the diagram depicting the PTCP, we have so far only imple-
mented the three inner states.

/error

/failure

/success(false)

call

/success(true)

next

   stop

exit

abort

I
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I
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s3
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PTCP

Fig. B.2 The complete PTCP protocol.
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We need to enable a client to abort the execution of a goal:

ptcp(Pid, Target, Session) :-
catch(state_1(Pid, Target, Session),

’$abort_goal’,
ptcp(Pid, Target, Session)).

To make it work, the last line in the above implementation of toplevel_spawn/2
must be changed into this:

spawn(ptcp(Pid, Target, Session), Pid, Options).

Here is to tell the toplevel actor to abort the execution of any goal that it currently
runs:

toplevel_abort(Pid) :-
catch(thread_signal(Pid, throw(’$abort_goal’)),

error(existence_error(_,_), _),
true).

The action of aborting a particular execution of a goal passed totoplevel_call/2-3
must not be confused with the action of exiting the toplevel process. The latter can
be performed by using toplevel_exit/2 (or just exit/2 which as can be seen
here means the same):

toplevel_exit(Pid, Reason) :-
exit(Pid, Reason).

As suggested already in Chapter 1, programmers should not be burdened with
having to remember the details of protocols and forms of built-in messages such
as ’$call’, ’$next’ and ’$stop’. Instead, such details should be hidden behind
interface predicates dealingwith sending them, implementing toplevel_call/2-3
simply as

toplevel_call(Pid, Goal) :-
toplevel_call(Pid, Goal, []).

toplevel_call(Pid, Goal, Options) :-
Pid ! ’$call’(Goal, Options).

and toplevel_next/1-2 like so

toplevel_next(Pid) :-
toplevel_next(Pid, []).

toplevel_next(Pid, Options) :-
Pid ! ’$next’(Options).

and, finally, toplevel_stop/1 like so:

toplevel_stop(Pid) :-
Pid ! ’$stop’.
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B.1.6 What is missing from the sketches?

The predicates implemented so far are sufficient for running many of the example
programs given in Chapter 1 and Chapter 2 of this book. Of course, this is just a
start, and to be able to run all programs, and in particular the ones in Chapter 3,
more is needed. Notably, the current implementation sketch does not support

• network-transparent concurrency and distribution,
• the implementation of an actors’s private database, and
• security.

As for network transparency, the scenarios in Chapter 3 show in great detail how
the stateful distribution layer might work. Recall that to spawn an actor on a remote
node, the node option must be passed to spawn/3 with a URI pointing to the node:

?- spawn(foo, Pid, [
node(’http://n7.org’)

]).
Pid = 34925412@’http://n7.org’.
?-

Note that once this works for spawn/3, it will work for toplevel_spawn/2 too.
Exiting remote processes must also be implemented so that it can be handled in

the following way:

?- exit(34925412@’http://n7.org’, normal).
true.
?-

Our implemention of the send operator will only work for the simplest of cases of
local messaging, but a complete implementation of an ACTOR node must also allow
sending to remote processes, like so:

?- 34925412@’http://n7.org’ ! bar.
true.
?-

Once thisworks for!/2, it will alsomaketoplevel_call/2-3,toplevel_next/1-2
and related predicates work.

Note that the stateful distribution layer depends on WebSockets and that, as far
as we know, at this point in time SWI-Prolog is the only Prolog system that offers a
WebSocket library.

Source code injection such as in the following example must also be supported
by an ACTOR node:

?- spawn(baz, Pid, [
load_text(’p(a). p(b).’)

]).
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Pid = 71123976@’http://n1.org’.
?-

Injected source code must end up in the spawned actor’s private Prolog database
and thus we need a viable approach to the implementation of this database and
the isolation it requires. Isolation can be based on thread_local/1 or the use of
temporary modules. (Temporary modules are used by library(pengines).)

If source code injection works for spawn/3, it will work for toplevel_spawn/2
and rpc/3 as well.

On the subject of security, a very important requirement relates to sandboxing.
The approach taken by library(sandbox) in SWISH is not satisfactory.





Appendix C
A bigger example

Below, we have ported an Erlang program1 into Web Prolog that uses seven concur-
rently running actor processes to solve the so called Dining Philosophers problem.2
This program is also available and can be run in the tutorial accompanying the report.

sleep :-
Time is random_float/10,
sleep(Time).

doForks(ForkList) :-
receive({

{grabforks, {Left, Right}} ->
subtract(ForkList, [Left,Right], ForkList1),
doForks(ForkList1);

{releaseforks, {Left, Right}} ->
doForks([Left, Right| ForkList]);

{available, {Left, Right}, Sender} ->
( member(Left, ForkList),

member(Right, ForkList)
-> Bool = true
; Bool = false
),
Sender ! {areAvailable, Bool},
doForks(ForkList);

{die} ->
format("Forks put away.~n")

}).

areAvailable(Forks, Have) :-
self(Self),
forks ! {available, Forks, Self},

1 https://github.com/acmeism/RosettaCodeData/blob/master/Task/Dining-
philosophers/Erlang/dining-philosophers.erl
2 https://en.wikipedia.org/wiki/Dining_philosophers_problem
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receive({
{areAvailable, false} ->

Have = false;
{areAvailable, true} ->

Have = true
}).

processWaitList([], false).
processWaitList([H|T], Result) :-

{Client, Forks} = H,
areAvailable(Forks, Have),
( Have == true
-> Client ! {served},

Result = true
; Have == false
-> processWaitList(T, Result)
).

doWaiter([], 0, 0, false) :-
forks ! {die},
format("Waiter is leaving.~n"),
diningRoom ! {allgone}.

doWaiter(WaitList, ClientCount, EatingCount, Busy) :-
receive({

{waiting, Client} ->
WaitList1 = [Client|WaitList], % add to waiting list
( Busy == false,

EatingCount < 2
-> processWaitList(WaitList1, Busy1)
; Busy1 = Busy
),
doWaiter(WaitList1, ClientCount, EatingCount, Busy1);

{eating, Client} ->
subtract(WaitList, [Client], WaitList1),
EatingCount1 is EatingCount+1,
doWaiter(WaitList1, ClientCount, EatingCount1, false);

{finished} ->
processWaitList(WaitList, R1),
EatingCount1 is EatingCount-1,
doWaiter(WaitList, ClientCount, EatingCount1, R1) ;

{leaving} ->
ClientCount1 is ClientCount - 1,
flag(left_received, N, N+1),
doWaiter(WaitList, ClientCount1, EatingCount, Busy)

}).
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philosopher(Name, _Forks, 0) :-
format("~s is leaving.~n", [Name]),
waiter ! {leaving},
flag(left, N, N+1).

philosopher(Name, Forks, Cycle) :-
self(Self),
format("~s is thinking (cycle ~w).~n", [Name, Cycle]),
sleep,
format("~s is hungry (cycle ~w).~n", [Name, Cycle]),
waiter ! {waiting, {Self, Forks}}, % sit at table
receive({

{served} ->
forks ! {grabforks, Forks}, % grab forks
waiter ! {eating, {Self, Forks}}, % start eating
format("~s is eating (cycle ~w).~n", [Name, Cycle])

}),
sleep,
forks ! {releaseforks, Forks}, % put forks down
waiter ! {finished},
Cycle1 is Cycle - 1,
philosopher(Name, Forks, Cycle1).

dining :-
AllForks = [1, 2, 3, 4, 5],
Clients = 5,
self(Self),
register(diningRoom, Self),
spawn(doForks(AllForks), ForksPid),
register(forks, ForksPid),
spawn(doWaiter([], Clients, 0, false), WaiterPid),
register(waiter, WaiterPid),
Life_span = 20,
spawn(philosopher(’Aristotle’, {5, 1}, Life_span)),
spawn(philosopher(’Kant’, {1, 2}, Life_span)),
spawn(philosopher(’Spinoza’, {2, 3}, Life_span)),
spawn(philosopher(’Marx’, {3, 4}, Life_span)),
spawn(philosopher(’Russel’, {4, 5}, Life_span)),
receive({

{allgone} ->
format("Dining room closed.~n")

}),
unregister(diningRoom),
unregister(forks),
unregister(waiter).




